ROCHESTER HILLS BROWNFIELD REDEVELOPMENT AUTHORITY

ACT 381 WORK PLAN

To Conduct MDEQ Environmental Activities

Legacy Rochester Hills Redevelopment Project Northeast Corner of Hamlin and Adams Roads Rochester Hills, Michigan 48309

PREPARED BY Rochester Hills Brownfield Redevelopment Authority

1000 Rochester Hills Drive Rochester Hills, Michigan 48309 Contact Person: Sara Roediger Email: roedigers@rochesterhills.org

Phone: (248) 841-2573

AKT Peerless

22725 Orchard Lake Road Farmington, Michigan 48336 Contact Person: Bret Stuntz Email: stuntzb@aktpeerless.com

Phone: (248) 615-1333

PROJECT # 3679f6

REVISION DATE April 4, 2018

MDEQ APPROVAL

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	ELIGIBLE PROPERTY INFORMATION	2
		1.1.1 Location and Eligibility	2
		1.1.2 Current Ownership	2
		1.1.3 Proposed Future Ownership	
		1.1.4 Delinquent Taxes, Interest, and Penalties	
		1.1.5 Existing and Proposed Future Zoning for the Eligible Property	
	1.2	HISTORICAL USE OF THE ELIGIBLE PROPERTY	
	1.3	CURRENT USE OF THE ELIGIBLE PROPERTY	3
	1.4	SUMMARY OF PROPOSED REDEVELOPMENT AND FUTURE USE FOR THE ELIGIBLE PROPERTY	4
2.0	CURRE	NT PROPERTY CONDITIONS	4
	2.1	PROPERTY ELIGIBILITY	4
	2.2	SUMMARY OF ENVIRONMENTAL CONDITIONS	4
		2.2.1 Environmental Investigations	4
		2.2.2 Summary of Current Known Conditions	8
	2.3	FUNCTIONALLY OBSOLETE	19
	2.4	BLIGHTED	19
	2.5	ADJACENT AND CONTIGUOUS	19
3.0	SCOPE	OF WORK	20
	3.1	MDEQ ELIGIBLE ACTIVITIES	20
		3.1.1 Department Specific Activities	20
		3.1.2 Preparation of Brownfield Plan and Act 381 Work Plan	
	3.2	LOCAL-ONLY ELIGIBLE ACTIVITIES	27
4.0	SCHED	ULE AND COSTS	27
	4.1	SCHEDULE OF ACTIVITIES	27
	4.2	ESTIMATED COSTS	27
		4.2.1 Description of MDEQ Eligible Activities Costs	27
		4.2.2 Contingency	27
5.0	PROJE	CT COSTS AND FUNDING	28
	5.1	TOTAL ESTIMATED PROJECT COSTS	29
	5.2	SOURCES AND USES OF FUNDS	29
6.0	LIMITA	TIONS	29

Table of Contents (continued)

<u>FIGURES</u>	
Figure 1	Scaled Property Location Map
Figure 2	Eligible Property Boundary Map
Figure 3	Property Maps with Soil Analytical Results
Figure 4 Propert	y Maps with Groundwater Analytical Results
Figure 5 Proposed Locations fo	or Soil Remediation and Engineering Controls
Figure 6	Site Plans
<u>TABLES</u>	
Table 1	Eligible Activities Cost Detail
Table 2	Tax Increment Revenue Estimates
Table 3	Reimbursement Allocation Schedule
<u>APPENDICES</u>	
Appendix A	Brownfield Plan
Appendix B	Resolutions
Appendix C	Executed Reimbursement Agreement
Appendix D	Supplemental Material

ACT 381 WORK PLAN

Legacy Rochester Hills Redevelopment Project Northeast Corner of Hamlin and Adams Roads Rochester Hills, Michigan 48309

1.0 Introduction

The Rochester Hills Brownfield Redevelopment Authority (the "Authority") is submitting this Act 381 Work Plan for the property located at the 28-Acre Vacant Property on the Northeast Corner of Hamlin Road and Adams Road (the "subject property"). The subject property comprises two parcels (Parcel ID Numbers 15-29-101-022 and 15-29-101-023). The Brownfield Plan for the Legacy Rochester Hills Redevelopment Project (the "Brownfield Plan") was approved by the Authority on March 6, 2018, and the Rochester Hills City Council approved the Brownfield Plan on City Council BFP Approval Date. Refer to Appendix A for a copy of the Brownfield Plan and Appendix B for copies of the respective resolutions approving the Brownfield Plan.

A previous Act 381 Work Plan was approved in 2008 to conduct MDEQ environmental activities for a proposed redevelopment project on the subject property. However, the proposed project did not occur, and the anticipated previous developer walked away from the property. A new developer has been identified and a new redevelopment project proposed, which necessitated this Work Plan. The original 381 Work Plan will be withdrawn and replaced by this Work Plan. The new developer anticipates remediating the western portion of the subject property to the extent necessary to obtain a No Further Action (NFA) determination from MDEQ. The original Act 381 Work Plan did not include the required activities and costs to obtain an NFA for the subject property.

Legacy Rochester Hills (Project) consists of the redevelopment of the subject property. The final plans for the redevelopment have not been completed. However, this Project will include the remediation of contaminated soils on the western portion of the subject property and construction of a new residential apartment complex to include approximately 368 units with onsite surface parking. In addition, due care engineering controls will be constructed on the eastern portion of the subject property, where higher concentrations of contaminants in soil are present. This Project will ultimately put underutilized property back to productive use and will generate new tax revenue for the City. In addition to the economic benefits of this development to the City of Rochester Hills, environmental activities are anticipated that would provide a safer and healthier community to the public and environment alike.

Founded in 1952, Goldberg Companies, Inc, are national developers, general contractors and property managers of residential and commercial real estate. Goldberg Companies, Inc, are large community supporters in their project locations. Their commitment to quality and excellence has – and will continue to be – the cornerstone of the company. All their properties are developed to own, not to sell. As a result, their primary focus is to provide a level of construction, maintenance and management of residential properties that remains unparalleled in the real estate industry. Goldberg Companies, Inc's broader mission is to serve the community by building trusted relationships and creating a better quality of life for its residents.

The Project is seeking tax increment financing (TIF) incentives. In addition, the Project has received approval for a sub-grant from Oakland County's 2017 EPA Assessment Grant. Any eligible activity costs that are paid for with the EPA Assessment Grant funds will not be eligible for reimbursement as part of the Brownfield Plan or 381 Work Plan. The City does not anticipate applying for MDEQ grant funds as it understands that none are available at this time. Redevelopment is expected to begin in 2018, starting with environmental remediation activities and site preparation, followed by construction.

Based on the current site conditions, certain activities are necessary to prepare the subject property for redevelopment. The following sections present site background information, current subject property conditions, the proposed MDEQ environmental activities and the costs associated with the proposed activities.

1.1 Eligible Property Information

The following sections provide details on subject property ownership and use.

1.1.1 Location and Eligibility

The subject property is the 28-acre vacant property located on the northeast corner of Hamlin Road and Adams Road in the City of Rochester Hills, Michigan. The subject property comprises two parcels (Parcel ID Numbers 15-29-101-022 and 15-29-101-023). For the purposes of this report, the western parcel (Parcel ID Number 15-29-101-022) is designated as "Parcel A". The eastern parcel (Parcel ID Number 15-29-101-023) is designated as "Parcel B".

It is anticipated that the property boundary separating the two parcels will be redrawn prior to the commencement of the Project. It should be noted that any future parcel reconfigurations or divisions will not affect the eligible property boundary, nor would they necessitate a brownfield plan or 381 work plan amendment. Moreover, while it is anticipated that Department Specific Activities (i.e., environmental activities) will be conducted on both parcels, the parcels will likely be owned by separate entities.

Please refer to the Brownfield Plan located in Appendix A for the subject property legal description. Refer to Figure 1 for a Scaled Property Location Map and Figure 2 for an Eligible Property Boundary Map. Site Plans and Renderings are also included with the Figures Appendix.

The subject property is considered "eligible property" as defined by Act 381, Section 2 because: (a) the subject property was previously utilized as a commercial property; and (b) each of the two parcels is determined to be a "facility." Please refer to Section 2.0 for further information and the Brownfield Plan provided in Appendix A for the relevant supporting documentation.

1.1.2 Current Ownership

Ownership information for the parcels comprising the subject property is summarized in the following table.

DBB Adams, LLC/DBB Hamlin, LLC Mr. Dennis Bostick 32900 Dequindre Road Warren, Michigan 48092 Phone: (586) 939-5500

1.1.3 Proposed Future Ownership

It is anticipated that the parcel lines will be redrawn prior to acquisition. The current dividing line between the eastern and western subject property parcels will be moved to the east, but the total area defined by the subject property boundary will not change. Refer to Figure 2 for the proposed new parcel boundary lines. It is anticipated that Goldberg Companies, Inc will establish a single-purpose LLC to acquire and develop the western parcel (Parcel A).

It should be noted that any future parcel reconfigurations or divisions will not affect the Eligible Property boundary, nor would they necessitate a Plan amendment. It is anticipated that a to be determined entity will acquire the eastern parcel (Parcel B), which is intended for natural open area and/or public surface parking in support of the City recreational property to the east.

Parcel B will be owned by a to be determined entity and will be subject to an agreement permitting the owner of Parcel A (the "Developer") to access and implement the remedial work described in this Plan. Goldberg Companies, Inc.

c/o Mr. Eric Bell 25101 Chagrin Boulevard, Suite 300 Beachwood, Ohio 44122 Phone: (216) 831-6100

1.1.4 Delinquent Taxes, Interest, and Penalties

No delinquent taxes, interest, or penalties are known to exist for the property.

1.1.5 Existing and Proposed Future Zoning for the Eligible Property

The subject property is zoned Residential (R2). Future zoning is expected to stay the same. However, it is anticipated that a restrictive covenant will be placed on the eastern parcel (Parcel B) limiting future use.

1.2 Historical Use of the Eligible Property

The project is the redevelopment of the former Christensen Dump, located on two parcels northeast of the intersection of Hamlin and Adams Roads. The Christensen Dump operated from the mid-1950s until the mid-1960s. Later, during the 1960s and early-1970s, 55-gallon drums (which contained a variety of chemicals including paint and solvents) were dumped illegally on the property. The property has remained unimproved with no apparent use since that time.

Both parcels are heavily contaminated. Analytical results of previous environmental investigations conducted on the two parcels indicate that concentrations of select metals, pesticides, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) and polynuclear aromatic compounds (PNAs) were detected in soil and/or groundwater above Michigan Department of Environmental Quality (MDEQ) Residential Cleanup Criteria (RCC).

1.3 Current Use of the Eligible Property

The subject property currently is overgrown with vegetation. The subject property is not currently used for any significant or obvious purpose and has lain vacant since the early 1960s.

ACT 381 WORK PLAN | HAMLIN ADAMS REDEVELOPMENT PROJECT REVISION DATE: APRIL 4, 2018

1.4 Summary of Proposed Redevelopment and Future Use for the Eligible Property

Because of both heavy contamination and geotechnical issues from dumping, the properties have been unable to attract development or use since the 1960s. The area is attractive for new construction, but the costs associated with site conditions are so high that all previous efforts have been stymied. The most recent proposal, in 2008, failed because the redevelopment plan was unable to attract funding.

The proposed redevelopment has two components. The first, on the western portion of the property (Parcel A), involves remediation of contamination and construction of approximately 368 high-quality rental residential units. The second, on the eastern end of the property (Parcel B), is limited to due care response activities in the areas of most significant contamination (excavation and removal of certain non-hazardous contaminated soils, and capping and isolating the area of most significant impact). Together, the two components will result in economically productive rehabilitation and reuse of properties that, for decades, have been a blight on the community. In addition to the significant benefits of environmental cleanup, the project will result in an immediate increase in tax revenue for some taxing jurisdictions.

Goldberg Companies, Inc., is a leader in land development, construction and property management. Unlike most management companies, Goldberg Companies, Inc., focuses on long-term ownership and management and continues to invest in and maintain their properties, which they own and manage across the country.

Redevelopment is expected to begin in 2018, beginning with environmental remediation and site preparation activities.

2.0 Current Property Conditions

The following sections provide detail on the subject property's Brownfield qualifications.

2.1 Property Eligibility

As indicated in Section 1.1.1, the subject property is considered "eligible property" as defined by Act 381, Section 2. Additional information regarding property eligibility is provided in the Sections below.

2.2 Summary of Environmental Conditions

Under Part 201, a "facility" is defined as "any area, place, or property where a hazardous substance in excess of the concentrations which satisfy the requirements of section 20120a (1) (a) has been released, deposited, disposed of, or otherwise comes to be located." M.C.L. § 324.20101(1) (o). A "release" is defined to include "spilling" or "leaking" of a hazardous substance into the environment. In addition, a "release" includes the abandonment of containers or other closed receptacles containing hazardous substances. M.C.L. § 324.20101(1) (bb).

2.2.1 Environmental Investigations

The environmental investigations completed on the subject property since 2002 are summarized below.

- Soil Sampling and Monitoring Well Installation, prepared in June 2002 by Harding ESE for only the eastern parcel
- <u>Limited Subsurface Investigation</u>, prepared in October 2002 by AKT Peerless
- Limited Subsurface Investigation, prepared in December 2004 by AKT Peerless

- Phase I Environmental Site Assessment (ESA), prepared in January 2005 by AKT Peerless
- Supplemental Subsurface Investigation, prepared in February 2005 by AKT Peerless
- Category N Baseline Environmental Assessment Report, prepared on November 10, 2015 by AKT Peerless
- Phase II ESA, prepared in July 2007 by AKT Peerless
- <u>Limited Soil Gas Investigation</u>, conducted in April 2017 by AKT Peerless
- Limited Subsurface Investigation, conducted in June 2017 by AKT Peerless

Summaries of the reports and activities relevant to site conditions, since at least 2002, are provided in the following sections.

2.2.1.1 Harding ESE June 2002 Soil Sampling and Monitoring Well Installation for Parcel 15-29-101-023

Harding ESE conducted a subsurface investigation at the direction of the MDEQ throughout the fenced area on the subject property in June 2002. Thirteen (13) soil borings (GP-1 through GP-13) were advanced to further evaluate the historical drum burial area and assess groundwater conditions.

Laboratory analytical results indicate that concentrations of select VOCs, SVOCs, metals (arsenic, cadmium, chromium, lead, silver, and zinc), and PCBs exceed the MDEQ Drinking Water Protection (DWP), GSIP, Soil Volatilization to Indoor Air Inhalation (SVIAI), Infinite Source Volatile Soil Inhalation Criteria (VSIC), Particulate Soil Inhalation Criteria (PSI), and/or Direct Contact (DC) Residential Cleanup Criteria (RCC).

Additionally, in 2002, the MDEQ performed a groundwater sampling event of select monitoring wells. Based on review of laboratory analytical results, vinyl chloride was identified in a groundwater sample obtained from MW-4D in exceedance of the MDEQ DW RCC. The laboratory data associated with this groundwater sampling is on file with the MDEQ.

2.2.1.2 AKT Peerless' October 2002 Limited Subsurface Investigation

AKT Peerless conducted a limited subsurface investigation on the subject property and eastern adjoining parcel in October 2002. AKT Peerless advanced 15 test pits across the subject property. This investigation was performed in order to evaluate potential environmental impact associated with historical landfilling activities.

Soil samples collected from select test pits were submitted for laboratory analysis of Michigan metals and PCBs. Based on analytical results, the metals arsenic and chromium were identified in soil samples 2-3 (0-1') and 2-3 (10-12') at concentrations in exceedance of the MDEQ DWP, GSIP, and/or DC RCC.

2.2.1.3 AKT Peerless' December 2004 Limited Subsurface Investigation

On December 10, 2004, AKT Peerless conducted a limited subsurface investigation (on behalf of Hamlin & Adams Properties, LLC) of the subject property to address the environmental concerns identified in previous environmental investigations and identified within AKT Peerless' January 2005 Phase I ESA.

This subsurface investigation consisted of (1) the advancement of 10 soil borings (B-1 through B-10) on the subject property and (2) the collection of 13 soil samples and one groundwater sample. The 13 soil samples were submitted for laboratory analysis of PCBs, and the groundwater sample was submitted for laboratory analysis of Michigan metals and VOCs.

REVISION DATE: APRIL 4, 2018

Soil laboratory analytical results indicated concentrations of PCBs were not detected above MDEQ RCC within the 13 soil samples. PCB concentrations identified in B-3 (0-1') were detected at concentrations above the Direct Contact Criteria for the Federal Toxic Substance Control Act (TSCA) 40 C.F.R. §761, Subpart D and 40 C.F.R. §761, Subpart G (1,000 parts per billion (ppb)). However, the MDEQ RRD Operational Memorandum #1 indicates that in cases where the TSCA is not applicable, the Part 201 criteria should be used. Given that the PCBs are attributed to the illegal dumping activities conducted at the subject property prior to 1978, the TSCA standards are not applicable to the subject property. Refer to Appendix D for a letter from EPA to MDEQ concurring with this approach. Therefore, AKT Peerless compared PCB analytical results to the Part 201 MDEQ DC RCC for PCBs (4,000 ppb for residential land use).

Review of groundwater laboratory analytical results indicated that concentrations of VOCs and metals were not detected above MDEQ RCC.

2.2.1.4 AKT Peerless' January 2005 Phase I Environmental Site Assessment

Hamlin & Adams Properties, LLC retained AKT Peerless to conduct a Phase I ESA of the subject property. AKT Peerless identified the following recognized environmental conditions (RECs) in the January 2005 report:

- The subject property operated as a landfill since at least the mid-1950s until the early 1960s, which included the dumping of household and slaughterhouse wastes, and illegal dumping of drums and waste containing a variety of chemicals including PCBs and paint wastes.
- The southern adjoining property operated as a landfill since at least the early 1960s until 1976.

AKT Peerless recommended conducting a limited subsurface investigation to evaluate the on-site landfilling concern.

2.2.1.5 AKT Peerless' February 2005 Supplemental Subsurface Investigation

On February 12, 2005, AKT Peerless conducted a geophysical survey of the subject property in order to further evaluate the historical subject property landfilling activities. The results of the magnetometer survey identified several anomalies at the subject property. AKT Peerless excavated 20 test pits on the subject property on February 15, 2005. The test pits were advanced in areas identified as "anomalous" during the geophysical survey and in areas that appeared to be visually disturbed.

The results of the test pit investigation activities indicated the presence of buried materials in previously unidentified areas, specifically in the north-eastern and south-eastern portion of Parcel 15-29-101-023 (the eastern parcel).

AKT Peerless collected a total of four soil samples from test pits (one from TP-2, TP-3, TP-16b and TP-21) that were visually identified to be disturbed and/or containing debris. The soil samples were submitted for laboratory analysis of VOCs, PNAs, and Michigan metals. Based on review of laboratory analytical results, select metals (arsenic, cadmium, chromium, lead, mercury and selenium) were identified at concentrations exceeding the MDEQ DW, GSIP, and/or DC RCC.

AKT Peerless concluded that based on the results of this subsurface investigation, and on the analytical results from previous subsurface investigations, contaminant concentrations were detected above the MDEQ Residential Cleanup Criteria. Therefore, the subject property met the definition of a "facility", as

defined in Part 201 of Natural Resources and Environmental Protection Act (NREPA), Michigan Public Act (PA) 451, 1994, as amended.

2.2.1.6 AKT Peerless' November 2005 Category N Baseline Environmental Assessment

A Category N BEA was completed for the subject property on behalf of Hamlin & Adams Properties, LLC in November 2005 and submitted to the MDEQ for approval. The BEA was completed subsequent to a Phase I ESA and two Phase II ESAs (subsurface investigations) previously completed at the subject property in December 2004 and January and February 2005. Based on laboratory analytical results of the previous environmental investigations summarized above, the subject property met the definition of a "facility", as defined in Part 201 of the NREPA, Michigan Public Act (PA) 451, 1994, as amended.

2.2.1.7 AKT Peerless' July 2007 Phase II ESA Report

In June and July 2007, AKT Peerless conducted a subsurface investigation at the subject property to evaluate the existing contamination. AKT Peerless conducted the following scope of work: (1) advanced 12 soil borings to be converted to permanent monitoring wells throughout the subject property; (2) the advancement of 40 soil borings in the Area B location; (3) the advancement of 40 soil borings in the Area E location; (4) the completion of 51 test pits and 2 trenches (Areas A, C, D and F); (5) the collection of 234 soil samples; (6) the completion of two groundwater sampling events; (7) the collection of 21 groundwater samples; and (8) the completion of three methane field screening events. The results of the Phase II ESA investigation identified the following:

- Benzene, toluene, ethylbenzene, xylenes, 1,2,4 trimethylbenzene, 1,3,5 trimethylbenzene, n-butylbenzene, sec-butylbenzene, n-propylbenzene, acenaphthene, benzo(a)pyrene, di-n-butyl phthalate, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, PCBs, antimony, arsenic, cadmium, chromium, lead, mercury, nickel, selenium and silver were detected in soil across the subject property at concentrations exceeding the MDEQ Part 201 Non-Residential Cleanup Criteria. Various concentrations in soil were detected above the Groundwater-Surface Water Interface Protection (GSIP) criteria and Drinking Water Protection (DWP) criteria.
- Benzene, toluene, ethylbenzene, xylenes, 1,2,4 trimethylbenzene, 1,3,5 trimethylbenzene, di-n-butylphthalate, naphthalene, arsenic, lead and selenium were detected in shallow groundwater at the subject property at concentrations exceeding the MDEQ Part 201 Non-Residential Cleanup Criteria. Various concentrations in groundwater were detected above the Groundwater-Surface Water Interface (GSI) criteria and Drinking Water (DW) criteria.

2.2.1.8 AKT Peerless' April 2017 Limited Soil Gas Investigation

AKT Peerless installed a temporary groundwater monitoring well and installed soil gas monitoring wells at the subject property in April 2017. AKT Peerless obtained methane, carbon dioxide, oxygen and balance gas readings using a Landtec GEM 5000 gas analyzer. AKT Peerless submitted six soil gas and one groundwater sample for laboratory analyses. The results of the laboratory analyses of the groundwater sample and soil gas samples did not identify concentrations of target parameters above MDEQ Residential Cleanup Criteria.

2.2.1.9 AKT Peerless' June 2017 Limited Subsurface Investigation

In June 2017, AKT Peerless conducted a limited subsurface investigation at the subject property. AKT Peerless collected soil samples and submitted those samples for laboratory testing for select chemical

ACT 381 WORK PLAN | HAMLIN ADAMS REDEVELOPMENT PROJECT REVISION DATE: APRIL 4, 2018

analyses of SVOCs and/or metals including arsenic, lead, mercury, silver, hexavalent chromium, and total chromium. The results of the investigation identified the following:

- Arsenic was detected in soil samples at the subject property at concentrations exceeding the MDEQ Part 201 Non-Residential Cleanup Criteria. Various concentrations in soil were detected above the DWP criteria and Residential Direct Contact criteria.
- Arsenic and mercury were detected in soil samples at the subject property at concentrations
 exceeding the MDEQ Part 201 Non-Residential Cleanup Criteria. Various concentrations in soil
 were detected above the GSIP criteria.

Based on the laboratory analytical results, the subject property meets the definition of a facility, as defined in Part 201 of the NREPA, Michigan Public Act (PA) 451, 1994, as amended. In addition, the results of the metals investigation provided data to be utilized in site-specific background calculations for site redevelopment.

2.2.2 Summary of Current Known Conditions

As demonstrated in the preceding section, the subject property has been thoroughly investigated to determine the soil, soil gas and groundwater quality that currently exists. This section summarizes the current known conditions relative to applicable Part 201 residential cleanup criteria (RCC).

AKT Peerless anticipates completing a Phase I ESA and BEA on behalf of Goldberg Companies, Inc, or on behalf of related single-purpose LLCs.

Based on the analytical results obtained during AKT Peerless' 2002, 2004, 2005, and 2007 subsurface investigations of the subject property, the following hazardous substances were detected in samples collected from the subject property above their respective MDEQ RCC in soil and/or groundwater.

Summary of Part 201 Exceedances in Soil

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Antimony (7440360)	DW / 4,300	AKT-8 (3-5')	6,140 / AKT-8 (3-5')	15-29-101-023

ACT 381 WORK PLAN | HAMLIN ADAMS REDEVELOPMENT PROJECT REVISION DATE: APRIL 4, 2018

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Arsenic (7440382)	DW / 4,600 GSIP / 4,600 DC / 7,600	TP-2, TP-21, 2-3 (0-1'), 2-3 (10-12'), AKT-5 (20-22'), SB-5 (10-14'), SB-6 (18-20'), SB-9 (18-20'), SB-10 (18-20'), SS-3 (4-6'), SS-4 (2-4'), SS-6 (0-2'), SS-9 (2-4'), SS-10 (2-4') GP-1 (4-7'), GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-7 (4-8'), GP-9 (4-6'), GP-9 (6-7.5'), GP-10 (6-8'), GP-10 (8-10'), GP-11 (4.5-5'), GP-12 (0-2'), MW-9D (2-4'), MW-9D (4-6'), TP-16b, EP-28 (8'), EP-33 (15'), EP-48 (6'), AKT-8 (3-5'), AKT-200 (6.5-7.5'), AKT-202 (2-3'), AKT-203 (6.5-7.5'), AKT-204 (9-10'), AKT-205 (6-7'), AKT-205 (9.5-10.5'), AKT-206 (4-5'), AKT-207 (2-3'), AKT-210 (4-5'), AKT-210 (2-3'), AKT-211 (3-4'), AKT-211 (11-12')	25,000 / SB-5 (10-14') 36,000 / GP-3 (2-6')	15-29-101-022 15-29-101-023
Acenaphthene (83329)	GSIP / 8,700	DUP-1 [EP-5 (6')]	22,100 / DUP-1 [EP-5 (6')]	15-29-101-022
Benzene (71432)	DWP / 100	GP-1 (4-7'), GP-4 (2.5-4'), EB- 23 (3-5')	800 / EB-23 (3- 5')	15-29-101-023
Benzo(a)anthracene (56553)	DC / 20,000	GP-4 (2.5-4'), EB-20 (5-7')	33,000 / GP-4 (2.5-4')	15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Benzo(a)pyrene (50328)	DC / 2,000	DUP-1 [EP-5 (6')], GP-1 (4-7'), GP-4 (2.5-4'), GP-6 (2-4'), GP-10 (6-8'), EB-7 (1-3'), EB-11 (10-12'), Duplicate [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-23 (3-5'), EB-24 (8-10'), EB-25 (3-4'), EB-26 (1-3'), EB-27 (1-3'), EB-29 (1-3'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-31 (3-5'), EB-31 (7-9'), EB-32 (1-3'), EB-35 (1-3'), EB-39 (3-5'), EB-40 (3-5'), Duplicate 5 [EB-40(3-5')]	4,500 / DUP-1 [EP-5 (6')] 29,000 / GP-4 (2.5-4')	15-29-101-022 15-29-101-023
Benzo(b) fluoranthene (205992)	DC / 20,000	GP-4 (2.5-4')	48,000 / GP-4 (2.5-4')	15-29-101-023
beta- Hexachlorocyclohexa ne (319857)	GSIP / 37	TP1W	65 / TP1W	15-29-101-022
Bis(2- ethylhexyl)phthalate (117817)	DC / 2,800,000 SSSL / 10,000,000	GP-7 (4-8')	37,000,000 / GP-7 (4-8')	15-29-101-023
n-Butylbenzene (104518)	DWP / 1,600	EB-9 (8-10'), Duplicate 3 [EB-13 (13-15')]	10,000 / EB-9 (8-10')	15-29-101-023
sec-Butylbenzene (135998)	DWP / 1,600	GP-1 (4-7'), GP-4 (2.5-4'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	50,000/ EB-12 (8-10')	15-29-101-023
Cadmium (7440439)	DWP / 6,000	EP-31 (0.5-1'), SS-6 (0-2') GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2- 4'), GP-7 (4-8'), GP-8 (0-2'), TP- 16b, EB-1 (3-5'), EP-23 (2'), EP- 33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), AKT-8 (3-5')	39,000 / EP-31 (0.5-1') 61,000 / GP-8 (0-2')	15-29-101-022 15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Carbon tetrachloride (56235)	DWP/ 100	GP-6 (12-13.5')	110 / GP-6 (12- 13.5')	15-29-101-023
Carbazole (86748)	GSIP / 1,100	GP-6 (2-4'), GP-10 (6-8')	5,200 / GP-6 (2- 4')	15-29-101-023
Chromium (total) (18540299)	DWP/ 30,000 GSIP / 3,300 PSI / 260,000 DC / 2,500,000	TP-2, TP-3-1, TP-21, 2-3 (0-1'), 2-3 (10-12'), EP-5 (6'), DUP-1 [EP-5 (6')], DUP-2 [EP-14 (7')], EP-31 (0.5-1'), EP-37 (0.5-1'), DUP-5 [EP-37 (0.5-1')], SB-3 (18-20'), SB-5 (10-14'), SB-6 (18-20'), SB-10 (18-20'), SB-12 (18-20'), SB-10 (18-20'), SS-1 (2-4'), SS-3 (4-6'), SS-4 (2-4'), SS-5 (2-4'), SS-6 (0-2'), SS-7 (4-6'), SS-8 (0-2'), SS-9 (2-4'), SS-10 (2-4'), TR1N, TR1S, TR1W, TR1Bottom-N, TR1Bottom-S, TR2-N, TR2-S, TR2-East, TR2-West, TR2-B North, TR2-B South, TP1N, TP1Bottom-S, SB-2 (14-16'), GP-1 (4-7'), GP-2 (13-15'), GP-3 (2-6'), GP-3 (10-12'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-6 (12-13.5'), GP-7 (4-8'), GP-7 (9-10.5'), GP-8 (0-2'), GP-8 (9-10.5'), GP-9 (4-6'), GP-10 (8-10'), GP-11 (4-5.5'), GP-11 (5.5-7'), GP-12 (0-2'), GP-13 (16-18'), MW-9D (2-4'), MW-9D (4-6'), TP-16B, EB-1 (3-5'), EP-19 (0.5-1'), EP-22 (6'), Duplicate 3 [EP-22 (6')], EP-23 (2'), EP-28 (8'), EP-30 (7'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), EP-48 (6'), AKT-8 (3-5'), AKT-9 (8-10')	91,000 / SS-3 (4-6') 2,880,000 / GP- 5 (4-8')	15-29-101-022 15-29-101-023
Dibenzofuran (132649)	GSIP / 1,700	DUP-1 [EP-5 (6')]	26,400 / DUP-1 [EP-5 (6')]	15-29-101-022

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Di-n-butyl phthalate (84742)	GSIP / 11,000	GP-4 (11-12'), EB-12 (10-11'), EB-38 (3-5')	61,000 / GP-4 (11-12')	15-29-101-023
Ethylbenzene (100414)	DWP / 1,500 GSIP / 360 SVIAI / 87,000 SSSL / 140,000	GP-1 (4-7'), GP-4 (2.5-4'), GP-5 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), AKT-8 (3-5')	590,000 / EB- 12 (8-10')	15-29-101-023
Fluorene (86737)	GSIP / 5,300	DUP-1 [EP-5 (6')], EB-20 (5-7'), AKT-8 (3-5')	24,700 / DUP-1 [EP-5 (6')] 6,000 / EB-20 (5-7")	15-29-101-022 15-29-101-023
Fluoranthene (206440)	GSIP / 5,500	DUP-1 [EP-5 (6')] GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-10 (6-8'), EB-11 (10-12'), EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-23 (3-5'), EB-24 (8-10'), EB-25 (3-4'), EB-26 (1-3'), EB-27 (1-3'), EB-28 (8-10'), EB-29 (1-3'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-32 (1-3'), EB-38 (3-5'), EB-39 (3-5'), EB-40 (3-5'), Duplicate 5 [EB-40 (3-5')]	19,000 / DUP-1 [EP-5 (6')] 97,000 / GP-4 (2.5-4')	15-29-101-022 15-29-101-023
Isopropyl benzene (98828)	GSIP / 3,200	EB-11 (10-12'), EB-12 (8-10'), EB-19 (4-5'), EB-21 (8-10'), EB- 22 (6-8'), EB-23 (3-5'), Duplicate 4 [EB-30 (1-3')], EB- 38 (3-5')	70,000 / EB-12 (8-10')	15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Lead (7439921)	DC / 400,000 DWP / 700,000	TP-2, TP-21, EP-31 (0.5-1'), SS-6 (0-2') GP-1 (4-7'), GP-3 (2-6'), GP-4 (2.5-4'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-7 (4-8'), GP-8 (0-2'), TP-16B, EB-1 (3-5'), EP-23 (2'), EP-28 (8'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), AKT-8 (3-5')	660,000 / TP-2 2,450,000 / GP- 5 (4-8')	15-29-101-022 15-29-101-023
Mercury (7439976)	GSIP / 50 DWP / 1,700	TP-21, EP-14 (7'), DUP-2 [EP-14 (7')], EP-31 (0.5-1'), EP-37 (0.5-1'), DUP-5 [EP-37 (0.5-1')], SS-6 (0-2'), SS-9 (2-4') SB-3 (2-4'), GP-1 (4-7'), GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-7 (4-8'), GP-10 (8-10'), TP-16b, EB-1 (3-5'), EP-19 (0.5-1'), EP-22 (6')], EP-23 (2'), EP-28 (8'), EP-30 (7'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), EP-44 (6'), EP-48 (6'), AKT-8 (3-5'), AKT-SS9-N1 (0-1'), AKT-SS9-S1 (0-1'), AKT-SS9-S2 (0-1'), AKT-SS9-S1 (0-1'), AKT-SS9-S2 (0-1'), AKT-SS9-W2 (0-1'), AKT-SS9-S2 (0-1'), AKT-SS9-W2 (0-1')	500 / SS-6 (0- 2') & AKT-SS9- W2 (0-1') 2,530 / AKT-8 (3-5')	15-29-101-022 15-29-101-023
2- Methylnaphthalene (91576)	GSIP / 4,200 DWP / 57,000	DUP-1 [EP-5 (6')] GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), EB-9 (8- 10'), EB-11 (10-12'), EB-12 (8- 10'), EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB- 22 (6-8'), EB-23 (3-5'), EB-24 (8-10'), EB-28 (8-10'), EB-30 (1-3'), Duplicate 4 [EB-30 (1- 3')], EB-38 (3-5'), EB-39 (3-5'), AKT-8 (3-5')	16,500 / DUP-1 [EP-5 (6')] 388,000,000 / EB-39 (3-5')	15-29-101-022 15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Naphthalene (91203)	DWP / 35,000 GSIP / 730 SVIAI / 250,000 VSIC / 300,000	EP-5 (6'), DUP-1 [EP-5 (6')], EP-31 (0.5-1') GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-12 (10-11'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-22 (6-8'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), EB-39 (3-5'), EB-40 (3-5'), Duplicate 5 [EB-40 (3-5')], AKT-8 (3-5'), AKT-9 (8-10'), AKT-8 (3-5')	142,000 / DUP-1 [EP-5 (6')] 400,000 / EB- 12 (8-10')	15-29-101-022 15-29-101-023
Nickel (7440020)	DWP / 100,000	AKT-8 (3-5')	339,000 / AKT- 8(3-5')	15-29-101-023
Phenanthrene (85018)	GSIP / 2,100	EP-5 (6'), DUP-1 [EP-5 (6')] GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-10 (6-8'), EB-11 (10-12'), Duplicate 3 [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-22 (6-8'), EB-23 (3-5'), EB-24 (8-10'), EB-25 (3-4'), EB-26 (1-3'), EB-27 (1-3'), EB-29 (1-3'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-35 (1-3'), EB-40 (3-5'), Duplicate 5 [EB-40 (3-5')], AKT-8 (3-5')	51,400 / DUP-1 [EP-5 (6')] 33,000 / GP-6 (2-4')	15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Polychlorinated biphenyls (1336363)	DC / 4,000 VSIC / 240,000	DUP-1 [EP-5 (6')] GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-7 (4- 8'), GP-7 (9-10.5'), GP-8 (0-2'), EB-10 (10-12'), Duplicate 2 [EB-10 (10-12')], EB-11 (10-12'), EB-12 (8-10'), EB-11 (10-12'), EB-13 (3-5'), EB-13 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-19 (5-7'), EB-19 (8- 10'), EB-20 (1-3'), EB-20 (3-5'), EB-20 (5-7'), EB-21 (3-5'), EB-21 (8-10'), EB-22 (10-12'), EB-23 (3-5'), EB-22 (10-12'), EB-23 (3-5'), EB-28 (1-3'), EB-28 (3-5'), EB-29 (8-9'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-30 (3-5'), EB-31 (1-3'), EB-31 (3-5'), EB-32 (1-3'), EB-38 (3-5'), EB-39 (3-5'), EB-39 (3-5'), EB-39 (1-3'), EB-38 (3-5'), EB-39 (3-5'), EB-39 (3-5'), EB-39 (1-3'), EB-38 (3-5'), EB-39 (3-5'), EB-30 (1-3'), EB-38 (3-5'), EB-39 (3-5'), EB-40 (1-3'), EB-40 (3-5'), EB-40 (8-10'), Duplicate 4 [EP-33 (7')], AKT-8 (3-5')	22,100 / DUP-1 [EP-5 (6')] 2,300,000 / GP- 7 (4-8')	15-29-101-022 15-29-101-023
n-Propylbenzene (103651)	DWP / 1,600	GP-1 (4-7'), GP-4 (2.5-4'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 2 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	110,000 / EB- 12 (8-10')	15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
Selenium (7782492)	GSIP / 400	EP-31 (0.5-1'), SS-6 (0-2'), SB-1 (19-20'), SB-3 (18-20'), SB-6 (18-20'), SB-8 (18-20'), SB-9 (18-20'), SB-10 (18-20') GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-7 (4-8'), GP-8 (0-2'), TP-16b, EB-1 (3-5'), EP-23 (2'), EP-30 (7'), EP-33 (15'), AKT-8 (3-5')	1,000 / SB-1 (19-20') 1,700 / GP-4 (2.5-4')	15-29-101-022 15-29-101-023
Silver (7440224)	GSIP / 100 DWP / 4,500	EP-37 (1-2') SB-2 (14-16'), SB-3 (2-4'), GP-1 (4-7'), GP-2 (13-15'), GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-7 (4-8'), EP-23 (2'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), AKT-8 (3-5')	2,070 / EP-37 (1-2') 90,000 / GP-2 (13-15')	15-29-101-022 15-29-101-023
Toluene (10883)	DWP / 16,000 GSIP / 5,400 SVIAI / 330,000 SSSL / 110,000	EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-38 (3-5')	400,000 / EB- 12 (8-10')	15-29-101-023
Trichloroethylene (79016)	DWP / 100	GP-3 (10-12'), GP7 (4-8')	410 / GP-3 (10- 12')	15-29-101-023
1,2,4- Trimethylbenzene (95636)	DWP / 2,100 GSIP / 570 DC / 110,000 SSSL / 110,000	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-7 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), AKT-9 (8-10')	760,000 / EB- 12 (8-10')	15-29-101-023

Parameter (CAS Number)	Part 201 Generic Residential Criteria Exceeded	Sample Identification (1)	Maximum Concentration (μg/kg) ⁽²⁾	Parcel
1, 3, 5- Trimethylbenzene (108678)	DWP / 1,800 GSIP / 1,100 SSSL / 150,000	GP-4 (2.5-4'), EB-9 (9-10'), EB- 11 (10-12'), EB-12 (8-10'), EB- 13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3- 5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')]	280,000 / EB- 12 (8-10')	15-29-101-023
Xylenes (95476)	GSIP / 820 DWP / 5,600 SSSL / 150,000	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-7 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	930 / EP-31 (0.5-1') 2,070,000 / EB- 12 (8-10')	15-29-101-022 15-29-101-023
Zinc (7440666)	DWP / 2,400,000	GP-5 (4-8')	7,100,000 / GP- 5 (4-8')	15-29-101-023

^{(1) -} Sample identification: B-# indicates soil boring and (#-#) indicates sample depth in feet.

DWP – Drinking Water Protection Criteria

GSIP – Groundwater Surface Water Interface Protection Criteria

PSI- Particulate Soil Inhalation Criteria

SVIAI – Soil Volatilization to Indoor Air Inhalation Criteria

VSIC – Infinite Source Volatile Soil Inhalation Criteria

DC – Direct Contact Criteria

SSSL – Soil Saturation Concentration Screening Levels

Summary of Part 201 Exceedances in Groundwater

Parameter (CAS Number)	Part 201 Generic Residential Cleanup Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/L) ⁽²⁾	Parcel
Arsenic	DW / 10	MW-13D, AKT-5W, MW-2D,	21 / AKT-5W	15-29-101-022
(7440382)	GSIP / 10	AKT-9W, AKT-10W	33 / AKT-9W	15-29-101-023

 $^{^{(2)}}$ – µg/kg = micrograms per kilogram.

Parameter (CAS Number)	Part 201 Generic Residential Cleanup Criteria Exceeded	Sample Identification ⁽¹⁾	Maximum Concentration (μg/L) ⁽²⁾	Parcel
Benzene (71432)	DW / 5	AKT-9W	60 / AKT-9W	15-29-101-023
Chromium (7440473)	GSIP / 11	AKT-5W, MW-6	18 / AKT-5W 15 / MW-6	15-29-101-022 15-29-101-023
Di-n-butyl phthalate (84742)	GSIP / 9.7	AKT-9W	55 / AKT-9W	15-29-101-023
Ethylbenzene (100414)	DW / 74 GSIP / 18	AKT-9W	1,090 / AKT- 9W	15-29-101-023
Lead (7439921)	DW / 4	AKT-5W	42 / AKT-5W	15-29-101-022
4-Methyl-2-pentanone (MIBK) (108101)	DW / 1,800	AKT-9W	4,000 / AKT- 9W	15-29-101-023
Naphthalene (91203)	GSIP / 11	AKT-9W	90 / AKT-9W	15-29-101-023
Selenium (7782492)	GSI / 5	AKT-9W	8 / AKT-9W	15-29-101-023
Toluene (108883)	DW / 790 GSI / 270	AKT-9W	2,220 / AKT- 9W	15-29-101-023
1,2,4- Trimethylbenzene (95636)	DW / 63 GSI / 17	AKT-9W	730 / AKT-9W	15-29-101-023
1,3,5- Trimethylbenzene (108678)	DW / 72 GSI / 45	AKT-9W	120 / AKT-9W	15-29-101-023
Vinyl Chloride (75014)	DW/ 2	MW-4D	3.5 / MW-4D	15-29-101-023
Xylenes (1330207)	DW / 280 GSI / 41	AKT-9W	4,660 / AKT- 9W	15-29-101-023

^{(1) -} Sample identification: B-# indicates soil boring and (#-#) indicates sample depth in feet.

 $^{^{(2)} - \}mu g/L = micrograms per liter.$

DW – Drinking Water Criteria

GSI – Groundwater Surface Water Interface Criteria

Based on the analytical findings, both parcels meet the definition of a "facility" as defined by Part 201 of NREPA, Michigan PA 451 of 1994, as amended.

2.3 Functionally Obsolete

"Functionally obsolete" means that the subject property is unable to be used to adequately perform the function for which it was intended due to a substantial loss in value resulting from factors such as overcapacity, changes in technology, deficiencies or superadequacies in design, or other similar factors that affect the subject property itself or the subject property's relationship with other surrounding subject property.

A functionally obsolete designation has not been requested at this time.

2.4 Blighted

"Blighted" means property that meets any of the following criteria as determined by the governing body: (i) Has been declared a public nuisance in accordance with a local housing, building, plumbing, fire, or other related code or ordinance; (ii) Is an attractive nuisance to children because of physical condition, use, or occupancy; (iii) Is a fire hazard or is otherwise dangerous to the safety of persons or property; (iv) Has had the utilities, plumbing, heating, or sewerage permanently disconnected, destroyed, removed, or rendered ineffective so that the property is unfit for its intended use; (v) Is tax reverted property owned by a qualified local governmental unit, by a county, or by this state. The sale, lease, or transfer of tax reverted property by a qualified local governmental unit, county, or this state after the property's inclusion in a brownfield plan shall not result in the loss to the property of the status as blighted property for purposes of this act; (vi) Is property owned or under the control of a land bank fast track authority, whether or not located within a qualified local governmental unit. subject property included within a brownfield plan prior to the date it meets the requirements of this subdivision to be eligible property shall be considered to become eligible property as of the date the property is determined to have been or becomes qualified as, or is combined with, other eligible property. The sale, lease, or transfer of the property by a land bank fast track authority after the property's inclusion in a brownfield plan shall not result in the loss to the property of the status as blighted property for purposes of this act; (vii) Has substantial subsurface demolition debris buried on site so that the property is unfit for its intended use.

A blight designation has not been requested for the subject property at this time.

2.5 Adjacent and Contiguous

The City of Rochester Hills is considered a qualified local governmental unit as provided in Act 146 of 2000, as amended. The definition of "Eligible Property" in PA 381 of 1996, as amended, includes property that is located in a qualified local governmental unit and is a facility, functionally obsolete, or blighted and includes parcels that are adjacent or contiguous to that property if the development of the adjacent and contiguous parcels is estimated to increase the captured taxable value of that property.

Both parcels of the subject property are facilities; adjacent and contiguous status is not applicable at this time.

3.0 Scope of Work

The following scope of work has been identified to address the subject property's Brownfield conditions.

3.1 MDEQ Eligible Activities

The subject property will be prepared to make it suitable for development. Appropriate environmental investigations and environmental remediation activities will be and have been performed to prevent exposure to materials hazardous to human health and safety, and the environment. The Developer desires to be reimbursed for the costs of eligible activities. Tax increment revenue generated by the subject property will be captured and used to reimburse the cost of the eligible activities completed on the subject property, as authorized by Act 381, as amended, and pursuant to the terms of a Reimbursement Agreement (refer to Appendix C) with the Authority.

On the western Parcel A, Department Specific Activities include environmental assessment activities, excavation, soil removal, and backfill in contaminated areas. These activities are anticipated to begin in mid-2018 and are expected to take approximately three to four months to complete. Activities on the western parcel also include installation of sub slab venting systems on new construction. Installation of the systems will be coordinated with construction activities, which are estimated to take approximately 24-36 months to complete after environmental cleanup. Remediation activities to be conducted on Parcel B are anticipated to take place during 2019, but are subject to future discussions between the developer, the City, and the current property owner. These activities may include soil and waste removal, and installation of a hydraulic barrier, liner & cap, and passive methane venting system on the former landfill area.

Refer to Table 1 for a detailed description of the eligible activities for the Project and Table 2 for tax increment financing information.

3.1.1 Department Specific Activities

3.1.1.1 Baseline Environmental Assessment Activities

A Phase I ESA was completed for the subject property in January 2017. New Phase I ESAs, a Supplemental Subsurface Investigation, and BEAs are currently being prepared for the acquiring entities.

3.1.1.2 NFA Report and Documentation of Due Care Compliance Report

Phase I and Phase II ESAs are in process or have been completed for the subject property. A BEA will be completed for Parcels A and B prior to the development entity's (or entities') acquisition of the subject property. Additional due care investigations are planned for Parcel A and Parcel B.

Parcel A

Remediation on Parcel A at the subject property will be completed in order to obtain an unrestricted residential status. Subsequent to the completion of remedial activities, a No Further Action (NFA) report will be prepared and submitted to MDEQ for review and approval.

The BEA and NFA reporting will be completed in accordance with Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 Public Act (PA) 451, as amended, and Michigan Department of Environmental Quality (MDEQ) Instructions for Preparing and Disclosing Baseline Environmental Assessments and Section 7a Compliance Analyses, effective March 11, 1999. The NFA will describe remedial activities associated with soil and groundwater contamination at the subject property in light of

the nature of the proposed development construction activities and occupancy of the developed property. A detailed breakdown of the costs associated with this task is provided later in this section.

Parcel B

On Parcel B, targeted environmental response activities will be conducted on the areas associated with previous dumping and landfilling outside of the currently fenced area. As detailed in Section 2.3.4, these activities will include limited excavation of landfilled materials (likely largely in Source Area E). In addition, the fenced area, where most significant impact is generally located, will be subject to the installation of due care engineering controls. Response activities on "areas of most significant impact" are intended to address the paint waste landfilled onsite; identification of these areas will be through field observation during excavation activities, using visual and olfactory criteria. Subsequent to the completion of response activities and installation of due care engineering controls, a Documentation of Due Care Compliance (DDCC) report will be completed. Future use of Parcel B is intended to be restricted to non-residential use and is planned to be further limited to natural open area and surface parking. Therefore, in consultation with MDEQ, due care requirements for the intended use will be met. The Developer intends that the DDCC will be reviewed and approved by MDEQ, but does not intend to pursue closure for Parcel B.

After consultation with EPA and MDEQ, encapsulation of landfilled materials, which includes areas where PCB contamination was previously detected on Parcel B, will be conducted pursuant to Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 Public Act (PA) 451, as amended (Part 201), rather than the Toxic Substances Control Act of 1976, which EPA administers. Correspondence with EPA outlining the basis for this determination is provided in Attachment D.

The BEA and DDCC reporting will be completed in accordance with Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 Public Act (PA) 451, as amended, and Michigan Department of Environmental Quality (MDEQ) Instructions for Preparing and Disclosing Baseline Environmental Assessments and Section 7a Compliance Analyses, effective March 11, 1999. A detailed breakdown of the costs associated with this task is provided later in this section.

3.1.1.3 Health and Safety Plans

Site-specific Health and Safety Plans (HASPs) will be completed for redevelopment activities at the subject property by each of the subsurface contractors and others that can come into contact with potentially contaminated media during the performance of their work activities. The HASPs will be available for review by the City. The HASPs will comply with appropriate guidelines including the following:

- Michigan Occupational Safety and Health Act;
- Section 111(c)(6) of CERCLA;
- Occupational Safety and Health Administration requirements 29 CFR 1910 and 1926;
- Standard Operating Safety Guide Manual (revised November 1984) by the Office of Emergency and Remedial Response; and
- Occupation Safety and Health guidance manual for Hazardous Waste Site Activities (NIOSH/OSHA/USCG/EPA, DHHS [NIOSH] Publication No. 85-115, October 1985).

The HASPs will include the following elements:

• Authorized personnel and definition of responsibilities;

- proposed activities;
- personal protective equipment;
- decontamination procedures;
- work zone restrictions and delineations;
- personal protection upgrade/downgrade action limits;
- emergency information and telephone numbers;
- incident documentation procedures; and
- contingency plans.

Oversight will be conducted to ensure due care issues are addressed while eligible activities and construction activities are being completed. The following activities (at a minimum) will be documented:

- The type, location, quantities, etc., of materials removed from the site and disposed at the landfill or other appropriately licensed disposal operation.
- The final disposition and location of any contaminated media that can be managed on-site in accordance with due care requirements.
- Monitoring for unanticipated materials and/or materials previously not identified, including collection of samples for additional waste characterization.
- The type, location, materials and construction of vapor mitigation systems installed at the site to prevent future potential indoor air inhalation exposures.

The Contractor Site Safety Officer will document and enforce HASP issues with workers at the Site, including:

- Verification of on-site worker training and current certifications.
- Conducting site-specific HASP training for workers entering the site.
- Monitoring construction activities to ensure the HASP is being followed, including use of PPE, decontamination of equipment, site security, etc.

The Developer will provide copies of environmental construction management plans to the City and the MDEQ. A Construction Summary Report (CSR) will be prepared and submitted to the MDEQ-RRD at the completion of development activities. The CSR will summarize the due care issues addressed during the construction activities and will include such items as photographic documentation, disposal manifests, fill material load tickets, utility abandonment logs (if any), site plans, etc. to verify that the development construction activities were conducted in accordance with approved plans.

3.1.1.4 Soil Remediation Activities

AKT Peerless has conducted several investigations that detected numerous VOCs, SVOCs, PBCs and/or metals in soil and groundwater at concentrations that exceed MDEQ's Part 201 RCC. VOCs, SVOCs, PBCs and/or metals detected in soil and/or groundwater at the subject property during past investigations include:

Antimony Arsenic

Acenaphthene beta-Hexachlorocyclohexane

Benzene Benzo(a)anthracene

Benzo(a)pyrene Benzo(b)fluoranthene

Bis(2-ethylhexyl)phthalate n-Butylbenzene

Sec-Butylbenzene Cadmium

Carbon tetrachloride Carbazole

Chromium (total) Dibenzofuran

Di-n-butyl phthalate Ethylbenzene

Fluorene Fluoranthene

Isopropyl benzene Lead

Mercury 2-Methylnaphthalene

Naphthalene Nickel

Phenanthrene Polychlorinated biphenyls

n-Propylbenzene Selenium

Silver Toluene

Trichloroethylene 1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene 4-Methyl-2-pentanone (MIBK)

Vinyl Chloride Xylenes

Zinc

The Developer intends to construct a residential development on Parcel A and intends to remediate Parcel A so that a No Further Action (NFA) request can be submitted to MDEQ for approval. Therefore, the Developer plans to remove the source areas of contamination on Parcel A. Based on the analytical results from previous subsurface investigations, six source areas have been identified on Parcel A (additional areas of contamination related to former landfilling are on Parcel B). Site specific background calculations will be performed for arsenic and selenium as part of the NFA.

The Developer intends to perform environmental cleanup activities on Parcel B and install due care engineering controls, such that Parcel B can be used as open natural area and surface parking to support recreational activities on municipal property east of Parcel B. These cleanup activities include soil removal in Source Area E, as listed in the following table.

Procedures for relocation of contaminated soils will be specified in an Environmental Construction Management Plan for certain minimal amounts of relocation within Parcel B, if necessary. In general,

however, relocation of contaminated soils is not anticipated. Moreover, no contaminated soils are to be relocated between Parcel A and Parcel B, and none will be relocated within Parcel A.

The table below provides approximate volumes of contaminated soil/fill to be removed from each of the source areas and the former landfill area on the subject property.

Parcel Where Source	Source Area	Approximate Yd ³	
Area Is Located			
Parcel A	Source Area A	1,630	
Parcel A & B	Source Area B	3,556	
Parcel A	Source Area C-1	7,741	
Parcel A & B	Source Area C-2	23,333	
Parcel A	Source Area D	6,667	
Parcel B	Source Area E	23,185	
Parcel A	Source Area F	741	

Due to the concentrations of soil contaminants in these source areas and due to the fact that the Developer wishes to pursue a NFA designation, impacted soil and fill materials must be removed from the Parcel A. The soil/fill will be removed and disposed at a Type II landfill. The costs included in the eligible activities include excavation, transportation, disposal, verification sampling, backfill, oversight and reporting, and project management. Due to compaction requirements, an additional 40,000 tons of backfill is anticipated to be necessary to return excavated areas to grade. Remediation activities in Source Areas A-D and F are planned to begin in early 2018, and are anticipated to take approximately three to four months to complete. The remedial and due care work in Source Areas B, C-2 and E is expected to be conducted after completion of remedial work on Parcel A, funded by the tax increment revenue stream that will then be available.

It should be noted that previous subsurface investigations encountered discontinuous, perched groundwater pockets with limited contamination. Groundwater contamination appeared to have been due to leaching from surrounding contaminated soils. It is anticipated that these pockets of impacted groundwater will be removed and properly disposed of during soil remediation activities on Parcel A.

Please refer to Table 1, Eligible Activity Cost Detail, for specific line item costs for the due care activities, and to Figure 3 for the locations of the source areas. These costs include allowances for environmental project management, field time, and contracted services.

3.1.1.5 Hot Spot Removal

Previous subsurface investigations identified six hot spots of metals contamination, likely associated with shallow fill materials, much smaller than the source areas identified in section 3.1.1.3 above. These hot spots are located in the central and southeastern portions of the western Parcel A. In order to remediate these areas, approximately 1,500 yd³ of soil is anticipated to be excavated and disposed at a Type II landfill. The costs included in the eligible activities include excavation, transportation, disposal, verification sampling, backfill, oversight and reporting, and project management. These activities are anticipated to be completed at the same time as the soil removal described in the previous section. The costs in this section include allowances for environmental project management, field time and contracted services.

3.1.1.6 Sub-Slab Venting System (New Construction)

Methane has not been found extensively across the property; however, the subject property is at risk for migration of methane gas from the landfill located across Hamlin Road to the south. This would be a concern for financing. As a result, the Developer intends to install passive sub-slab venting systems in all new buildings as a presumptive remedy to prevent indoor air exposure. AKT Peerless will engage with MDEQ representatives to obtain concurrence of the draft venting system construction plan. Construction of the systems will occur at the same time as construction of the residential units, which is anticipated to occur over approximately 3 years, beginning in 2018. This cost includes assessment, design, construction, testing, reporting, and project management for the systems.

An Operation and Maintenance (O&M) Plan for the sub-slab venting systems will be prepared by an environmental consultant.

3.1.1.7 Engineering Controls – Former Landfill Area

Complete removal of the area of the highest contamination, the former landfill area on the eastern parcel, is not financially feasible. A hydraulic barrier system will be installed around the perimeter of the former landfill area (approximately 1,400 linear feet). Following the removal of contaminated soils from Area E, the initial portion of the barrier wall will be constructed adjacent to the western side of the landfill area (Refer to Figure 3, where this barrier wall is denoted as the "Clay Backfill Wall"). The final design of the barrier system is not complete, but will likely consist of a (minimum) 2-foot thick clay liner "slurry wall" around the remainder of the landfill area. The clay will be compacted to 95% based on the optimum moisture content. Shoring or trench boxes will be used to ensure slope stability during the installation and compaction of the clay walls. The purpose of the Clay Backfill Wall and slurry wall is to prevent infiltration of groundwater into the former landfill area. The bottom of the Clay Backfill Wall and slurry wall will tie into native clay, and the top of these walls will tie into the clay cap, thus completely encapsulating the landfill area. Further, these control measures will act to prevent leachate formation.

As noted above, the former landfill will be covered with 2 feet of compacted clay and a flexible membrane liner and cap to prevent exacerbation of existing contamination. The clay cap will tie into the slurry wall and Clay Backfill wall. In addition, if deemed necessary by MDEQ, a passive methane venting system will be designed and installed either (a) west of the former landfill area (approximately 1,400 linear feet), or (b) within the landfill area, to manage landfill gases on-site.

Design and installation specifications for the engineering controls for the former landfill area are anticipated to be developed in late 2018 or early 2019, based on information gathered during cleanup activities on Parcel A. Once developed, the design and installation specifications will be provided to the City and the MDEQ.

As noted in Section 3.1.1.2, the Developer intends that the DDCC will be reviewed and approved by MDEQ, but does not intend to pursue closure for Parcel B. The specifications for the engineering controls will be included with the DDCC.

The environmental consultant will prepare and implement an O&M Plan for the engineering controls installed in the former landfill area. The O&M Plan is anticipated to include a recommendation for quarterly long-term inspection/methane monitoring. The cost estimate for implementation of an O&M Plan is \$30,000 per year.

This cost includes design, installation, reporting, and project management for the systems.

3.1.1.8 Passive Methane Venting System

The south adjacent property is a former landfill. As a presumptive remedy to preemptively protect against the migration of contamination from methane gases, a passive methane venting system will be installed on the subject property along Hamlin Road, if deemed necessary by MDEQ. An O&M Plan for the venting system will be prepared.

If site conditions indicate the necessity of the passive methane venting system, the environmental consultant will prepare design and installation specifications for the passive methane venting system. Once developed, the design and installation specifications will be provided to the City and the MDEQ.

As noted in Section 3.1.1.2, the Developer intends that the DDCC will be reviewed and approved by MDEQ, but does not intend to pursue closure for Parcel B. The specifications for the passive methane venting system will be included with the DDCC.

This cost includes design, installation, reporting, and project management for the system. In addition, the environmental consultant will prepare and implement an O&M Plan for the engineering controls installed along Hamlin Road. The O&M Plan is anticipated to include a recommendation for quarterly long-term inspection/methane monitoring.

3.1.1.9 Waterproofing Seals and Gaskets for Stormwater Piping

Due to known contamination in soil that will be left in place on Parcel B and to mitigate against exacerbation of contamination, chemical resistant seals and gaskets may be installed on piping located on Parcel B to prevent the intrusion of contaminants on site into the stormwater system. The piping will run along the northern side of the property, north of the encapsulation zone.

3.1.1.10 Site Control & Erosion Control

In order to be protective of workers and residents, the excavation areas will be fenced or barricaded to minimize potential for unauthorized access to contaminated soil. These costs include the silt fencing for the north and east in order to mitigate erosion concerns; dust monitoring during environmental mitigation work in order to address further concerns of the neighbors to the north; a Soil Erosion and Sedimentation Control Plan; and a Fugitive Dust Emission Control and Contingency Plan. Other protective measures may include a gravel mat along the truck route leaving the property and/or other measures to minimize tracking of dirt and potentially impacted soil from the property. Protective measures will be outlined in the HASPs, as detailed in Section 3.1.1.3. Once developed, the HASPs will be made available to the City and the MDEQ.

During soil excavation and removal activities the truck routes will be as follows:

Site Arrival

- The trucks will initially use the entrance ramps on M-59 at the Adams Road interchange.
- The trucks will proceed north on Adams Road to Hamlin Road.
- Turn right (east) on Hamlin Road to enter the site. All trucks will be staged on site while waiting to be loaded or completion of shipping papers.

Site Departure

- The trucks leave the site onto Hamlin Road and proceed west toward Adams.
- The trucks will turn left (south) onto Adams Road and proceed to the M-59 interchange.
- The trucks will access M-59 from Adams Road and procedure to their destination.

3.1.1.11 Dewatering

The potential for water in excavations exists, particularly in Area E. In the event that groundwater is encountered, or if surface runoff accumulates, in sufficient quantities to require dewatering, the water will be containerized in frac tanks. Once containerized, the water will be sampled to determine whether or not disposal is necessary or if the water can be discharged to the POTW under a permit. In the event that water is encountered in a quantity that is too large to containerize, alternate methods for direct dewatering and disposal will be evaluated.

3.1.2 Preparation of Brownfield Plan and Act 381 Work Plan

AKT Peerless has prepared a Brownfield Plan and MDEQ Act 381 Work Plan for the subject property in accordance with all applicable MDEQ guidance. Developer anticipates incurring costs to assist with the tracking and reporting of incurred eligible costs.

3.2 Local-Only Eligible Activities

There are no local-only eligible activities identified.

4.0 Schedule and Costs

The following sections present the proposed schedule to complete the Project and the associated costs.

4.1 Schedule of Activities

Project activities will commence in 2018 following the Rochester Hills Brownfield Redevelopment Authority, the City Council, and MDEQ approvals, as applicable. Completion of the remediation activities on the western parcel and construction of the residential development is anticipated to be within approximately 3 years. It is anticipated that limited remedial activities will be conducted on the eastern parcel during construction of the residential development. Remedial activities on the eastern parcel are anticipated to occur in 2019.

4.2 Estimated Costs

The itemized estimated costs to complete the environmental eligible activities including all labor, equipment, subcontractors, and materials under this Act 381 Work Plan are provided in Sections 4.2.1 below and in the attached Table 1. Actual interest associated with the eligible activities not to exceed 5% to address the true cost of conducting the eligible activities associated with the development of this site is also included.

4.2.1 Description of MDEQ Eligible Activities Costs

The estimated cost for the activities plus contingency, fees, and interest described in this section is \$14,201,575. The Developer desires to be reimbursed for the costs of eligible activities. Individual costs associated with these activities are provided in the table below. See Table 1 for further details.

4.2.2 Contingency

A 15% contingency factor has been included to accommodate for unexpected conditions that may be encountered during the performance of eligible activities.

MDEQ Eligible Activities

Eligible Activity	Total Est. Cost
Department Specific Activities	
Phase I ESA	\$5,600
Baseline Environmental Assessment	\$15,000
Supplemental Subsurface Investigation	\$120,000
Environmental Construction Mgmt Plan	\$20,000
Project Management, Admin., and Consulting	\$25,000
Health & Safety Plan	\$2,000
Parcel A – Area A Soil/Waste Removal	\$114,537
Parcel A – Area B Soil/Waste Removal	\$244,444
Parcel A – Area C1 Soil/Waste Removal	\$506,426
Parcel A – Area C2 Soil/Waste Removal	\$1,473,667
Parcel A – Area D Soil/Waste Removal	\$427,833
Smaller Hot Spot Removal (SW Area)	\$100,000
Sub-slab Venting System (New Construction)	\$648,000
Parcel B – Area E Soil/Waste Removal	\$1,464,481
Parcel B – Removal & Disposal of PCB Soil	\$232,000
O & M Plan – Parcel B	\$900,000
Import Clean Fill for Land Balancing	\$680,000
Installation of Hydraulic Barrier (slurry wall)	\$150,000
Installation of Liner and Cap over former Landfill	\$120,000
Installation of Passive Methane Venting System	\$190,000
O & M Plan – Subfloor Methane Mitigation	
System, Slurry Wall and Cap	\$255,000
Passive Methane Venting System – Hamlin Road	\$260,000
O & M Plan – Venting System – Hamlin Road	\$150,000
Waterproofing Seals & Gaskets – Stormwater	\$40,000
Temporary Site Control and Erosion Control	\$50,000
Dewatering	\$75,000
Closeout Reporting & DDCC	\$15,000
NFA Due Care Plan	\$30,000
Subtotal of Environmental Eligible Activities	\$8,368,415
Contingency (A 15% contingency factor has been	
included to accommodate unexpected conditions	\$1,206,172
that may be encountered during redevelopment) Brownfield Plan & Act 381 Work Plan Prep and	
Compliance	\$45,000
Subtotal	\$9,619,587
Interest	\$4,581,988
Total MDEQ Reimbursable Costs	\$14,201,575

5.0 Project Costs and Funding

The following subsections present the total estimated Project costs and the source and uses of funds.

5.1 Total Estimated Project Costs

The total costs of the non-environmental eligible activities under this Act 381 Work Plan are provided in Table 1. The Developer anticipates making an investment of up to \$50 million in real and personal property improvements on the subject property.

5.2 Sources and Uses of Funds

The Developer anticipates investment of approximately \$50 million in real property improvements on the subject property including acquisition of the land. Redevelopment of the subject property is expected to subsequently generate material increases in taxable value and result in incremental taxable value beginning in 2019. The initial taxable value for the brownfield plan will be the subject property's 2017 assessment, because the 2017 taxable value was on the rolls when brownfield plan received final approval in early 2018, prior to spring equalization. Tax increment revenue will be utilized to reimburse the cost of eligible activities. Table 2 provides an estimate of tax increment revenue. The Developer will finance all eligible activities under this Act 381 Work Plan related to improvements on the subject property.

6.0 Limitations

The taxable value on real property is estimated to increase at a rate of 2.1% each year (refer to Table 2).

The incremental tax revenue estimates for the proposed development could vary from this estimate affecting the time period it takes to reimburse the eligible activities. The cost estimates included within this Act 381 Work Plan are just that—estimates—and the actual costs incurred may vary depending on site conditions. If in fact the eligible activity costs exceed the estimated amount for reimbursement, the Developer and the Authority may submit an amended Brownfield Plan and Act 381 Work Plan. Please reference the Brownfield Plan in Appendix A for additional information.

All reimbursements authorized under this Act 381 Work Plan shall be governed by the Reimbursement Agreement. The inclusion of eligible activities and estimates of costs to be reimbursed in this Act 381 Work Plan are intended to authorize the Authority to fund such reimbursements and does not obligate the Authority or the County to fund any reimbursement or to enter into the Reimbursement Agreement providing for the reimbursement of any costs for which tax increment revenues may be captured under this Act 381 Work Plan, or which are permitted to be reimbursed under this Act 381 Work Plan. The amount and source of any tax increment revenues that will be used for purposes authorized by this Act 381 Work Plan, and the terms and conditions for such use and upon any reimbursement of the expenses permitted by the Act 381 Work Plan, will be provided solely under the Reimbursement Agreement contemplated by this Act 381 Work Plan.

Figures

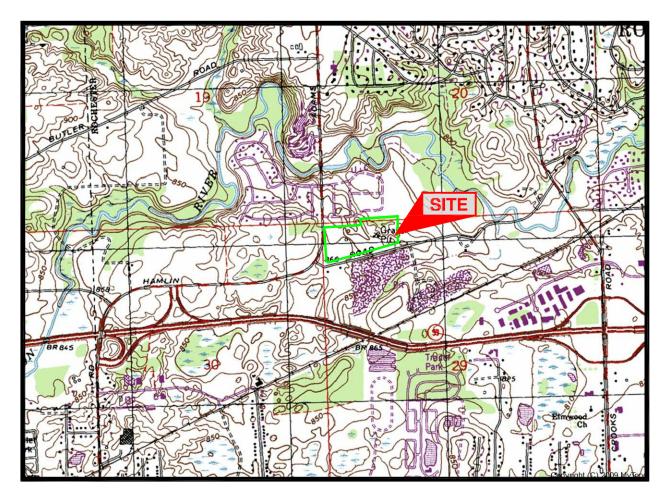


Figure 1
Scaled Property Location Map

ROCHESTER QUADRANGLE

MICHIGAN - OAKLAND COUNTY
7.5 MINUTE SERIES (TOPOGRAPHIC)

T.3 N.-R.11 E.

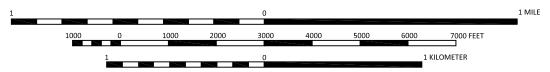


IMAGE TAKEN FROM 1997 U.S.G.S. TOPOGRAPHIC MAP

www.aktpeerless.com

SCALED PROPERTY LOCATION MAP

PARCEL 15-29-101-022 AND 15-29-101-023 NE CORNER OF HAMLIN & ADAMS ROADS ROCHESTER HILLS, MICHIGAN PROJECT NUMBER: 3679F6-5-25 DRAWN BY: ARR
DATE: 06/02/2017

FIGURE 1

Figure 2
Eligible Property Boundary Map

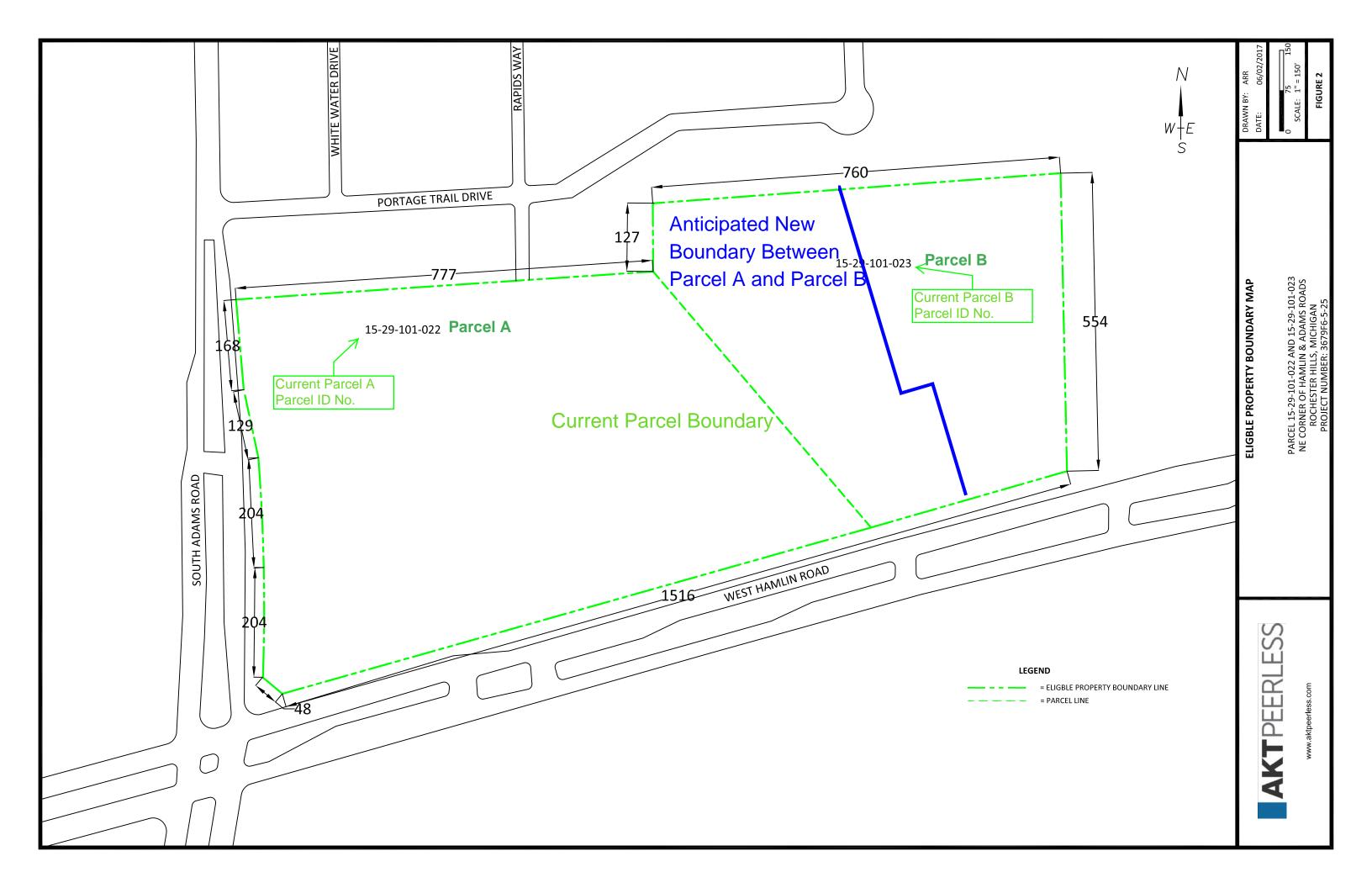
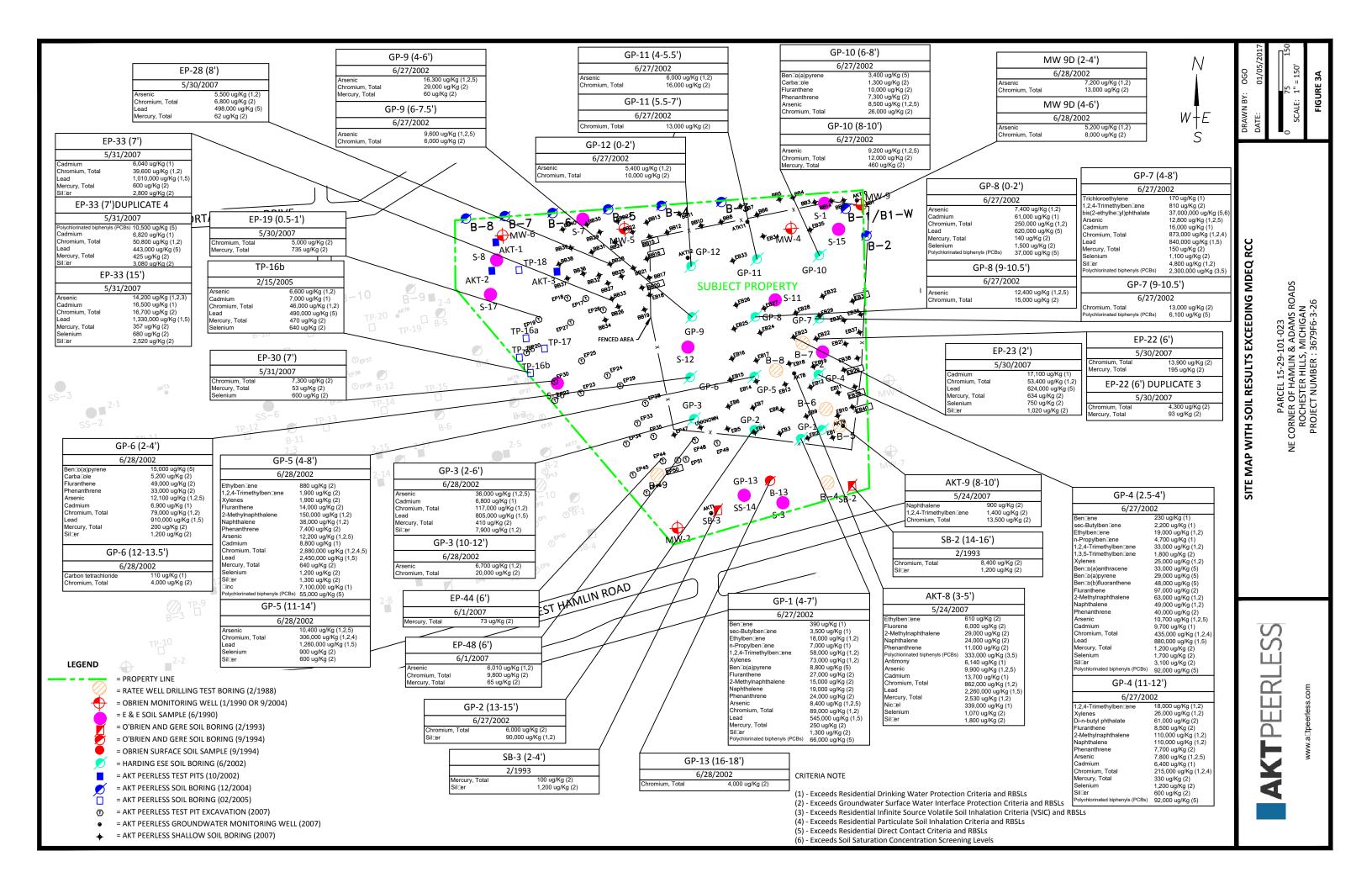



Figure 3

Property Maps with Soil Analytical Results

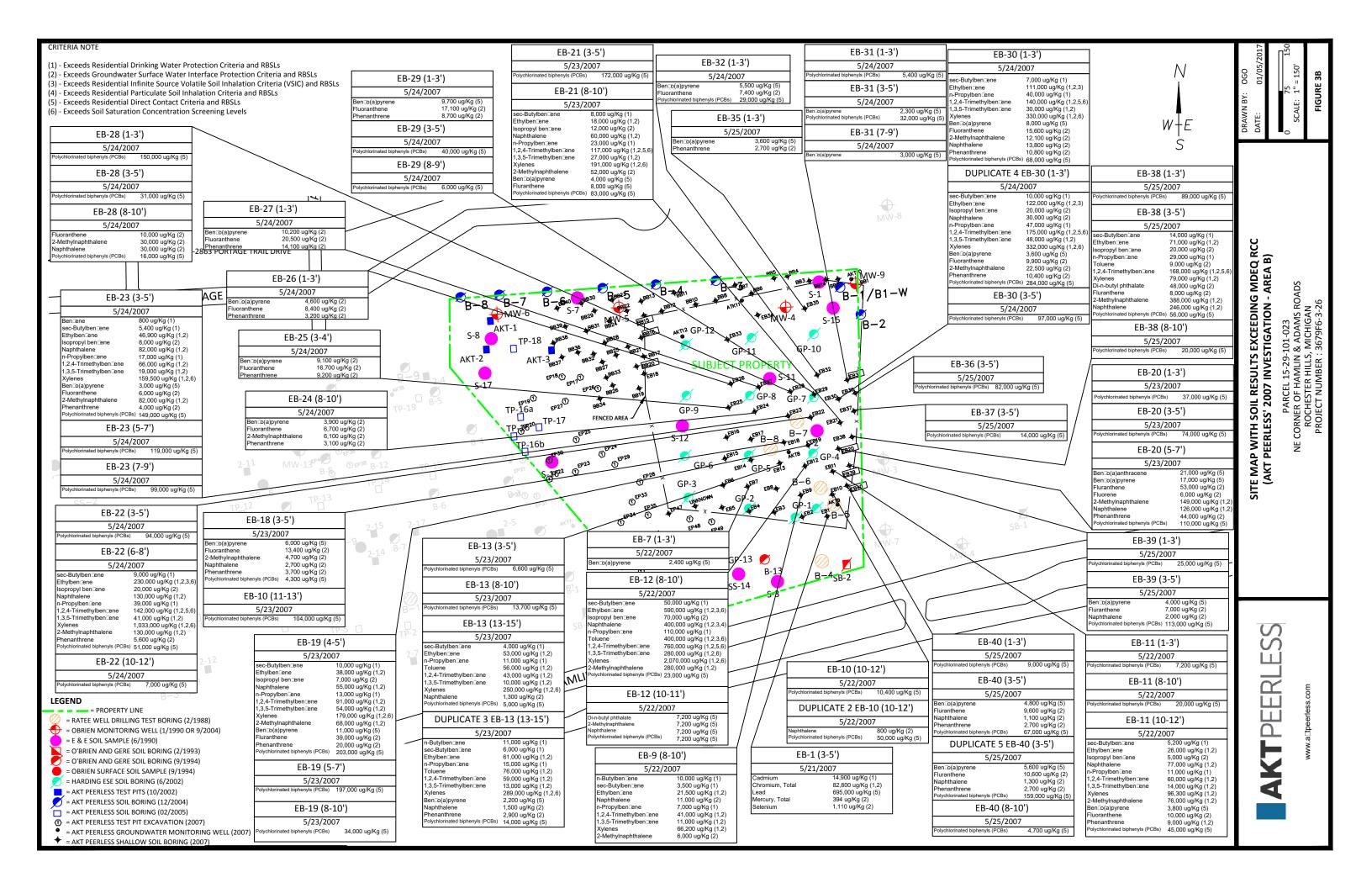
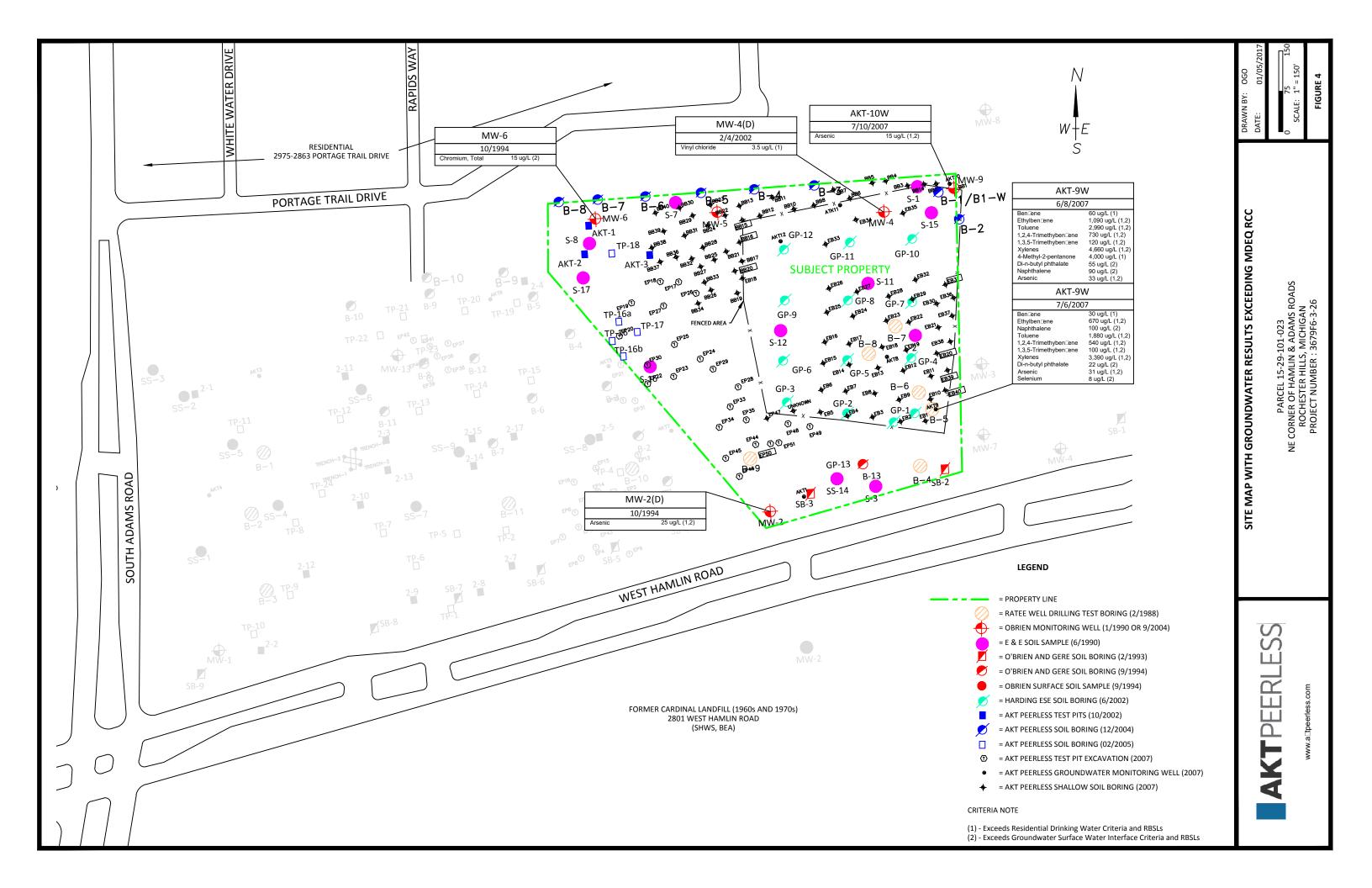



Figure 4

Property Maps with Groundwater Analytical Results

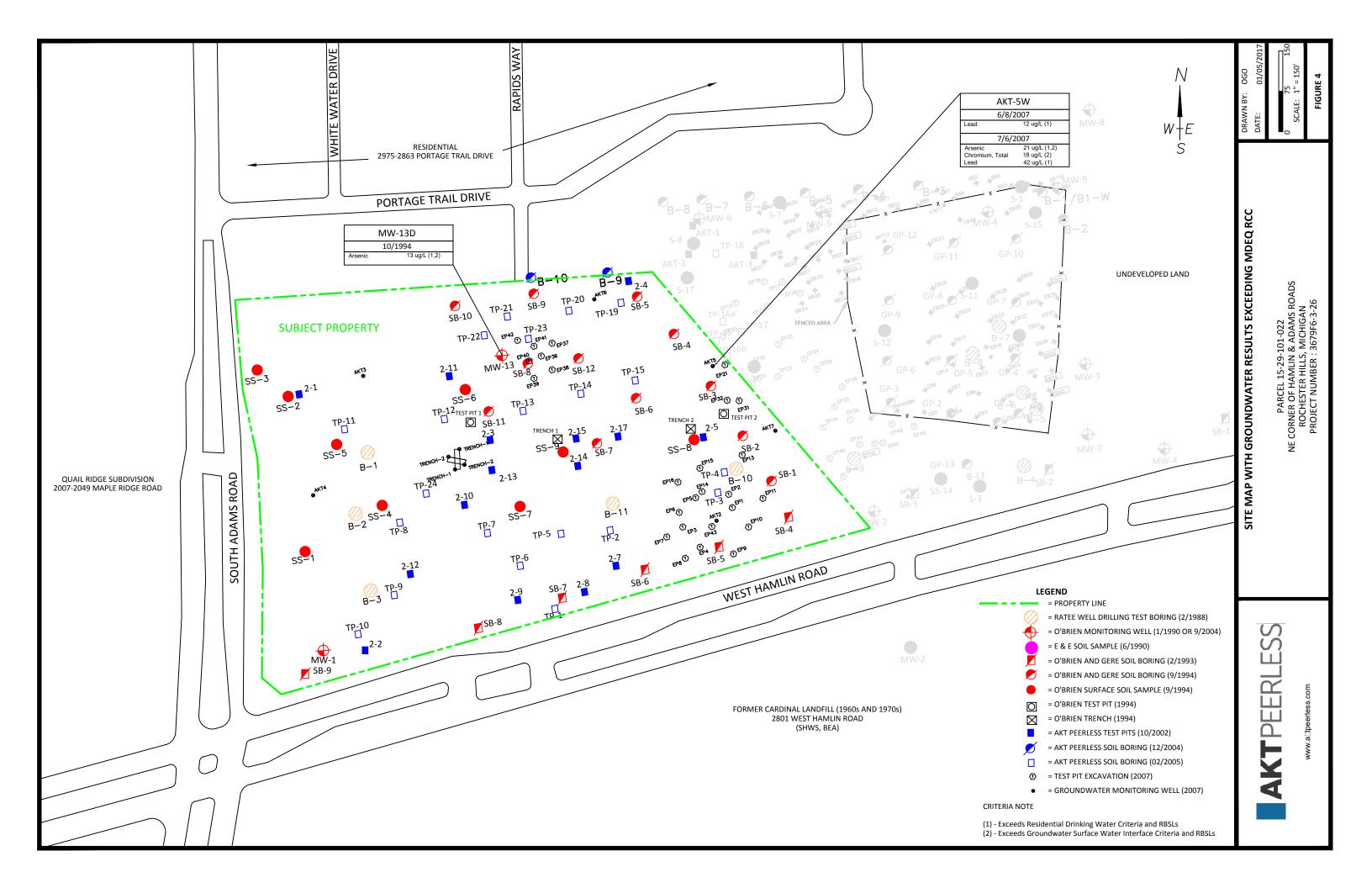


Figure 5

Proposed Locations for Soil Remediation and Engineering Controls

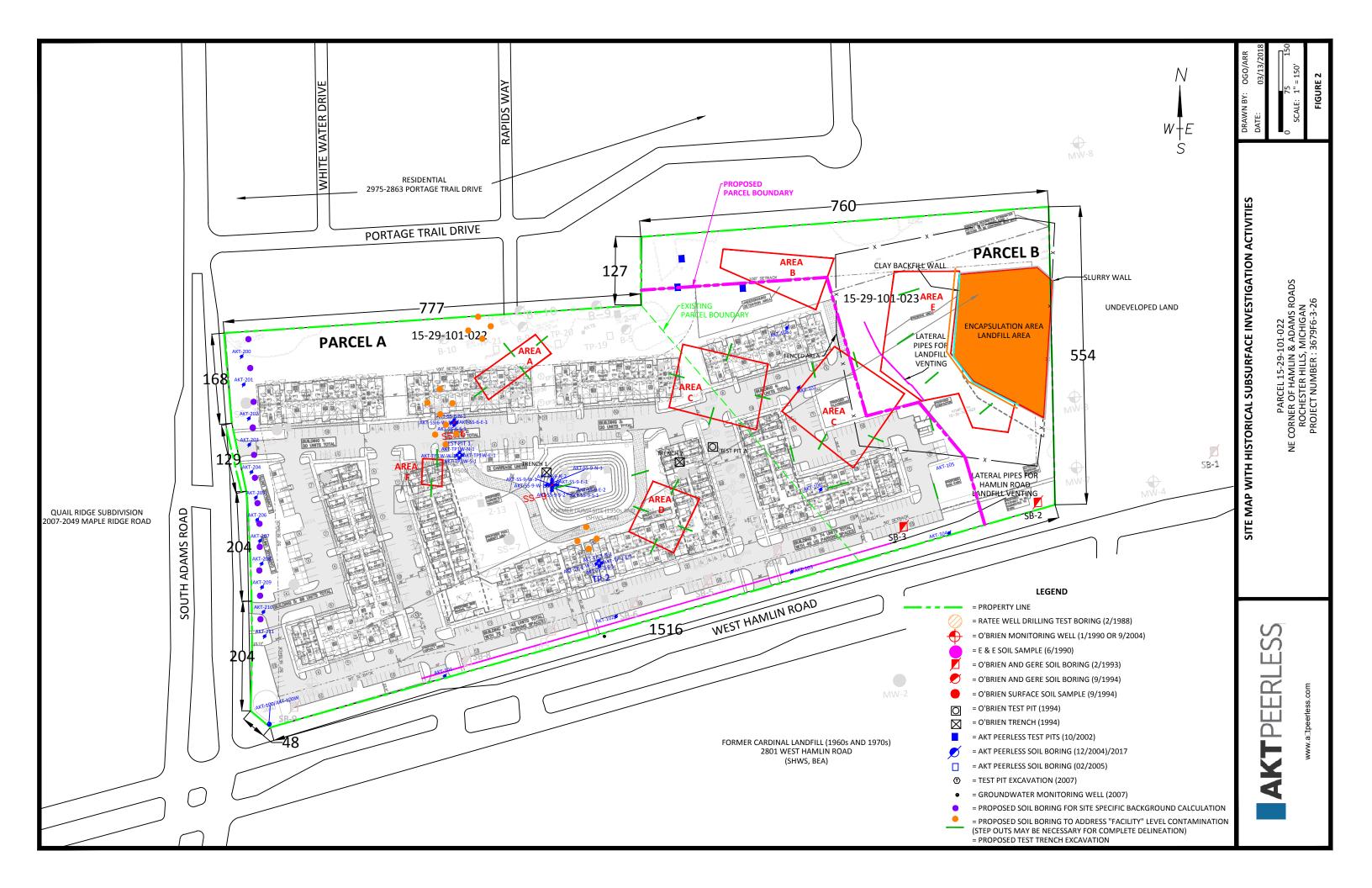
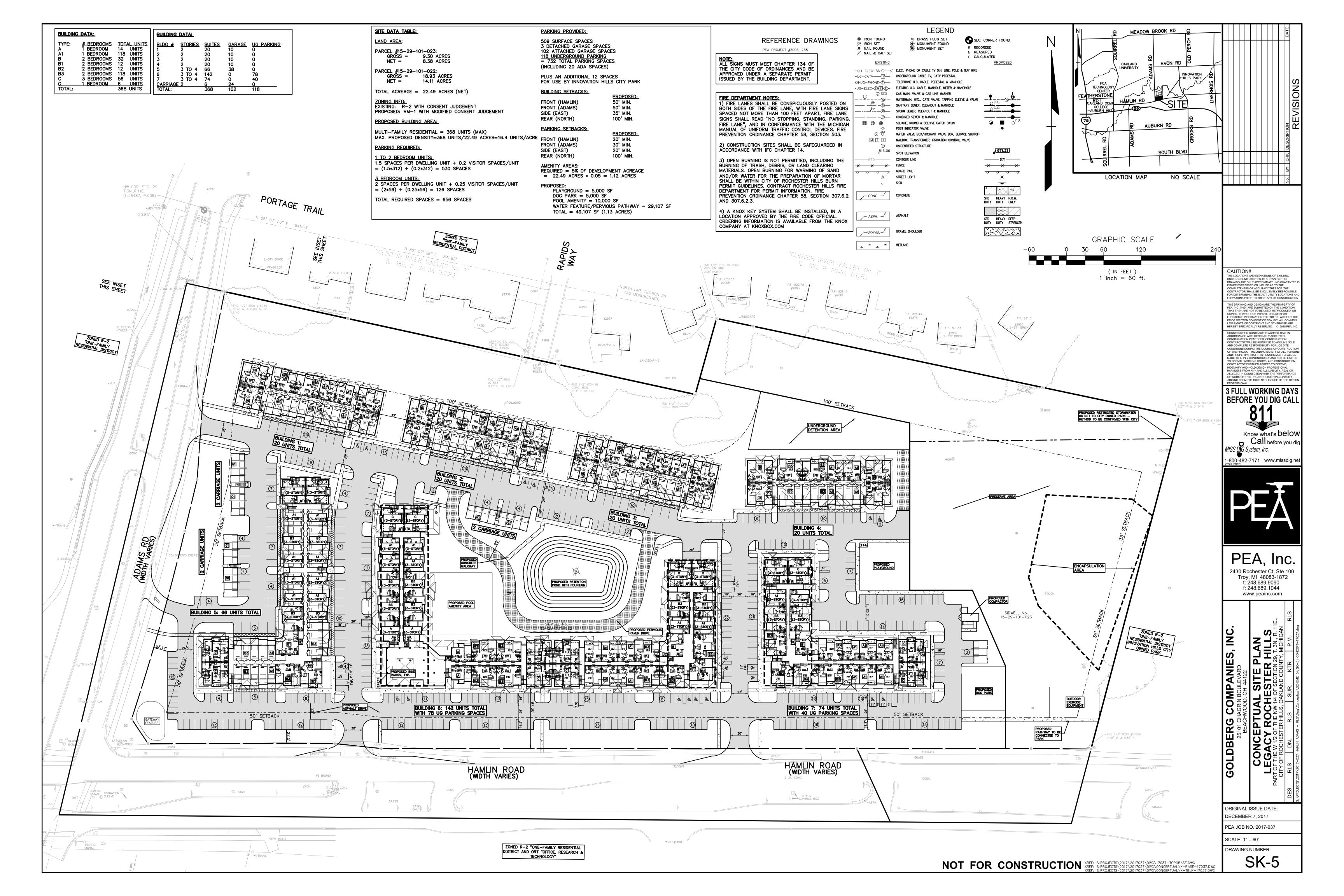
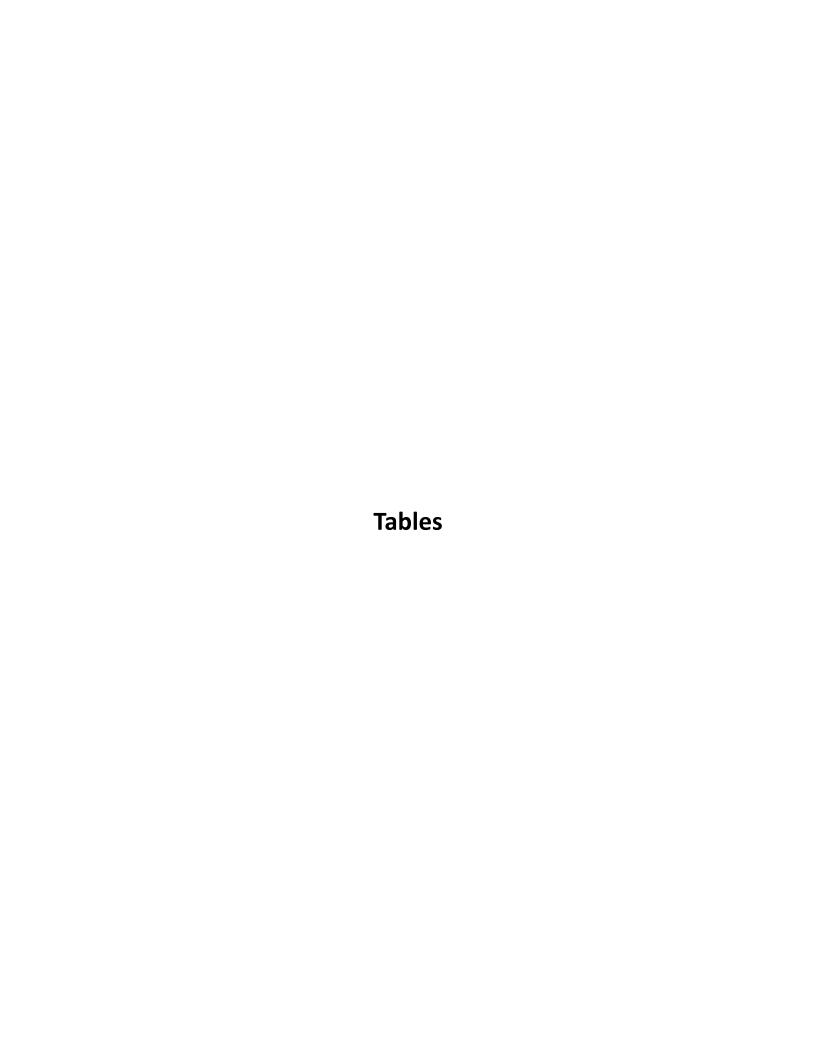




Figure 6
Site Plan

Table 1. Eligible Activities

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of April 2, 2018

ELIGIBLE ACTIVITIES COST SUMMARY					
					Estimated
					Cost of
				Elig	gible Activity
Department Specific Activities					8,368,415
15	% Continge	ncy on Eligi	ble Activities	\$	1,206,172
Brownfield Plan & Act 381 WP Preparation Activities				\$	45,000
Total Eligible Activiti	ies Cost w	ith 15% C	Contingency	\$	9,619,587
	Interest (d	calculated a	t 5%, simple)	\$	4,581,988
Total Eligible Activities Cost,	, with Cor	ntingency	& Interest	\$	14,201,575
BRA Administration Fee				\$	240,000
State Revolving Fund				\$	1,287,667
Local Brownfield Revolving Fund (LBRF)				\$	2,963,575
Total Elig	gible Cost	s for Rein	bursement	\$	18,692,816

ELIGIBLE ACTIVITIES COST DETAIL					
	# of Units	Unit Type	Cost/ Unit	E	st. Total Cost
Department Specific Activities					
Phase I	2	LS	\$ 2,800	\$	5,600
BEA	2	LS	\$ 7,500	\$	15,000
Supplemental Subsurface Investigation	1	LS	\$ 120,000	\$	120,000
Environmental Construction Managemnt Plan	1	LS	\$ 20,000	\$	20,000
Project Management, Adminsitration, and Consulting Support	1	LS	\$ 25,000	\$	25,000
HASP	1	LS	\$ 2,000	\$	2,000
Parcel A - Area A Soil/Waste Removal					
Area A Excavation, Transportation & Disposal	1,630	YD	\$ 45	\$	73,333
Area A Backfill	1,630	YD	\$ 17	\$	27,704
Area A Laboratory Costs and Verification Sampling	1	LS	\$ 6,000	\$	6,000
Area A Environmental Management/Oversight	1	LS	\$ 7,500	\$	7,500
Parcel A - Area B Soil/Waste Removal					
Area B Excavation, Transportation & Disposal	3,556	YD	\$ 45	\$	160,000
Area B Backfill	3,556	YD	\$ 17	\$	60,444
Area B LaboratorY Costs and Verification Sampling	1	LS	\$ 10,000	\$	10,000
Area B Environmental Management/Oversight	1	LS	\$ 14,000	\$	14,000
Parcel A - Area C1 Soil/Waste Removal					
Area C1 Excavation, Transportation & Disposal	7,741	YD	\$ 45	\$	348,333
Area C1 Backfill	7,741	YD	\$ 17	\$	131,593
Area C1 Laboratory Costs and Verification Sampling	1	LS	\$ 11,500	\$	11,500
Area C2 Environmental Management/Oversight	1	LS	\$ 15,000	\$	15,000
Parcel A - Area C2 Soil/Waste Removal					
Area C2 Excavation, Transportation & Disposal	23,333	YD	\$ 45	\$	1,050,000
Area C2 Backfill	23,333	YD	\$ 17	\$	396,667
Area C2 Laboratory Costs and Verification Sampling	1	LS	\$ 15,000	\$	15,000
Area C2 Environmental Management/Oversight	1	LS	\$ 12,000	\$	12,000
Parcel A - Area D Soil/Waste Removal					
Area D Excavation, Transportation & Disposal	6,667	YD	\$ 45	\$	300,000
Area D Backfill	6,667	YD	\$ 17	\$	113,333
Area D Laboratory Costs and Verification Sampling	1	LS	\$ 6,500	\$	6,500
Area D Environmental Management/Oversight	1	LS	\$ 8,000	\$	8,000

Table 1. Eligible Activities

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of April 2, 2018

Parcel A - Area F Soil/Waste Removal					
Area F Excavation, Transportation & Disposal	741	YD	\$	45	\$ 33,333
Area F Backfill	741	YD	\$	17	\$ 12,593
Area F Laboratory Costs and Verification Sampling	1	LS	\$	3,500	\$ 3,500
Area F Environmental Management/Oversight	1	LS	\$	5,000	\$ 5,000
Smaller Hot Spot Removal (Southwestern Area)	1	LS	\$	100,000	\$ 100,000
Sub-slab venting system - all new construction	162,000	SF	\$	4	\$ 648,000
Parcel B - Area E Soil/Waste Removal					
Area E Excavation, Transportation & Disposal	23,185	YD	\$	45	\$ 1,043,333
Area E Backfill	23,185	YD	\$	17	\$ 394,148
Area E Laboratory Costs and Verification Sampling	1	LS	\$	15,000	\$ 15,000
Area E Environmental Management/Oversight	1	LS	\$	12,000	\$ 12,000
Parcel B - Removal and Disposal of PCB Impacted Soils	1	LS	\$	232,000	\$ 232,000
O&M Plan - Parcel B	1	LS	\$	900,000	\$ 900,000
Import Clean Fill for Land Balancing	40,000	CY	\$	17	\$ 680,000
Installation Hydraulic Barrier (i.e. slurry wall)	1	LS	\$	150,000	\$ 150,000
Installation of Liner and Cap over former landfill	1	LS	\$	120,000	\$ 120,000
Installation of Passive Methane Venting System (former "landfill" area)	1	LS	\$	190,000	\$ 190,000
Operation and Maintenance Plan - Subfloor Methane Mitigation Systems, S	1	LS	\$	255,000	\$ 255,000
Passive Methane Venting System along Hamlin Road	1	LS	\$	260,000	\$ 260,000
O&M Plan - Passive Methane Venting System along Hamlin Road	1	LS	\$	150,000	\$ 150,000
Waterproofing Seals and Gaskets for Stormwater Piping	1	LS	\$	40,000	\$ 40,000
Temporary Site Control & Erosion Control	1	LS	\$	50,000	\$ 50,000
Dewatering	1	LS	\$	75,000	\$ 75,000
Closeout Reporting (East Parcel) & Documentation of Due Care Compliance	1	LS	\$	15,000	\$ 15,000
NFA Due Care Plan	1	LS	\$	30,000	\$ 30,000
			Su	btotal	\$ 8,368,415
Brownfield Plan & Act 381 Work Plan Preparation					
BRA Application Fee and Administration Fee					\$ -
Brownfield Plan	1	LS	\$	10,000	\$ 10,000
Act 381 Work Plan	1	LS	\$	15,000	\$ 15,000
Cost Tracking & Compliance	1	LS	\$	20,000	\$ 20,000
			Su	btotal	\$ 45,000

Table 2. Tax Increment Revenue Estimates

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of April 2, 2018

	Estimated T	V Increase rate: 1.0	21												
		Plan Year	1	2	3	4	5	6	7		8	9	10	11	12
		Calendar Year	2019	2020	2021	2022	2023	2024	202	25	2026	2027	2028	2029	2030
	Initial	Taxable Value \$	37,440							37,440					
Post-Dev TV (30% of Project Investment	t) Esti	mated New TV \$		\$ 10,526,208						-		\$ 17,034,460		\$ 17,757,419	
Incremental Dif	ference (New	TV - Initial TV) \$	4,473,792	\$ 10,488,768	\$ 15,000,000	\$ 15,315,786	\$ 15,638,204	\$ 15,967,393	\$ 16,30	03,494	\$ 16,646,654	\$ 16,997,020	\$ 17,354,743	\$ 17,719,979	\$ 18,092,885
School Capture	Millage Rat	e													
State Education Tax (SET)	6.0000	Initial \$ Incremental \$	225 26,843							225 97,821					
School Operating Tax	18.0000	Initial \$	674	\$ 674	\$ 674	\$ 674	\$ 674	\$ 674	\$	674	\$ 674	\$ 674	\$ 674	\$ 674	\$ 674
School Tota		Incremental \$	80,528	\$ 188,798	\$ 270,000	\$ 275,684	\$ 281,488	\$ 287,413	\$ 29	93,463	\$ 299,640	\$ 305,946	\$ 312,385	\$ 318,960	\$ 325,672
Local Capture	Millage Rat	0													
<u>Local Capture</u>	williage Nat	Initial \$	9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$	9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9
OAK COUNTY PARKS	0.2392	Incremental \$	1,070			•		•		3,900		•		•	
	0.2002	Initial \$	8	•			· · · · · · · · · · · · · · · · · · ·		\$	8				\$ 8	
HURON-CLIN PARK	0.2146	Incremental \$	960							3,499					
CENERAL FLINID		Initial \$	79	\$ 79	\$ 79	\$ 79	\$ 79	\$ 79	\$	79	\$ 79	\$ 79	\$ 79	\$ 79	\$ 79
GENERAL FUND	2.1136	Incremental \$	9,456	\$ 22,169	\$ 31,704	\$ 32,371	\$ 33,053	\$ 33,749	\$ 3	34,459	\$ 35,184	\$ 35,925	\$ 36,681	\$ 37,453	\$ 38,241
LOCAL STREET I		Initial \$	13	\$ 13	\$ 13	\$ 13	\$ 13	\$ 13	\$	13	\$ 13	\$ 13	\$ 13	\$ 13	\$ 13
	0.3507	Incremental \$	1,569	•	• •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•		5,718	\$ 5,838	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		, ,
LOCAL STREET II		Initial \$	18							18					
	0.4803	Incremental \$	2,149	•						7,831					
LOCAL STREET III		Initial \$	11							11			· ·		
	0.2939	Incremental \$	1,315							4,792					
FIRE FUND	2 7000	Initial \$	101							101			· ·		
	2.7000	Incremental \$	12,079	•	• •	· · · · · · · · · · · · · · · · · · ·				44,019		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
SPECIAL POLICE I	4.4054	Initial \$	45					•		45				\$ 45	
	1.1954	Incremental \$	5,348							19,489					
SPECIAL POLICE II	1.5633	Initial \$ Incremental \$	59 6,994			•				59 2 5,487					
	1.3033	Initial \$	7	•						7				\$ 27,702	
PATHWAY	0.1837	Incremental \$	822			•		•		2,995		•	•		
	0.1037	Initial \$								7				\$ 7	
RARA OPERATING	0.1928	Incremental \$	863							3,143				· .	
		Initial \$	4							4				\$ 4	
OPC TRANSPORTION	0.0990	Incremental \$	443	\$ 1,038	\$ 1,485	\$ 1,516	\$ 1,548	\$ 1,581	\$	1,614	\$ 1,648	\$ 1,683	\$ 1,718	\$ 1,754	\$ 1,791
ODC ODED ATING		Initial \$	9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$	9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9
OPC OPERATING	0.2377	Incremental \$	1,063	\$ 2,493	\$ 3,566	\$ 3,641	\$ 3,717	\$ 3,795	\$	3,875	\$ 3,957	\$ 4,040	\$ 4,125	\$ 4,212	\$ 4,301
LIBRARY OPERATING		Initial \$	29	\$ 29	\$ 29	\$ 29	\$ 29	\$ 29	\$	29	\$ 29	\$ 29	\$ 29	\$ 29	\$ 29
LIBRART OF ERATING	0.7739	Incremental \$	3,462	\$ 8,117	\$ 11,609	\$ 11,853	\$ 12,102	\$ 12,357	\$ 1	12,617	\$ 12,883	\$ 13,154	\$ 13,431	\$ 13,713	\$ 14,002
OAK COUNTY OPERATING		Initial \$	151							151					\$ 151
	4.0400	Incremental \$	18,074		\$ 60,600	\$ 61,876	\$ 63,178			65,866	\$ 67,252	\$ 68,668	\$ 70,113	\$ 71,589	\$ 73,095
OAK INT SD-ALLOC		Initial \$	7							7				\$ 7	
	0.1985	Incremental \$	888							3,236					
OAK INT SD-VTD		Initial \$	118							118					
	3.1413	Incremental \$	14,054							51,214					
OAK COMM COLLEGE		Initial \$	59							59					
	1.5707	Incremental \$	7,027	\$ 16,475	\$ 23,561	\$ 24,057	\$ 24,563	\$ 25,080	\$ 2	25,608	\$ 26,147	\$ 26,697	\$ 27,259	\$ 27,833	\$ 28,418
Local Tota		_													
Non-Capturable Millages	Millage Rat										<u>.</u>				
ZOO AUTHORITY	0.0990	New TV \$	447		•					1,618					
ART INSTITUTE	0.1981	New TV \$	894							3,237					
CH 20 DRAIN DEBT	0.0417	New TV \$	188	•	-		•	-		681			•		
OPC BUILDING DEBT	0.2345	New TV \$	1,058							3,832					
ROCH SCH DEBT	5.9000	New TV \$	26,616	\$ 62,105	\$ 88,721	\$ 90,584	\$ 92,486	\$ 94,429	۶ <u>۶</u>	96,412	\$ 98,436	\$ 100,503	\$ 102,614	\$ 104,769	\$ 106,969
Total Non-Capturable Taxe	s 6.4733														

Table 2. Tax Increment Revenue Estimates

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of April 2, 2018

	Estimate	d TV Increase rate:															
		Plan Year	13	14	15	16	17	18		19	20		21	22	23	7	24
		Calendar Year	2031	2032	2033	2034	2035	2036		2037	2038		2039	2040	2041	20	042
	Init	ial Taxable Value \$	37,440	37,440 \$	37,440	\$ 37,440	\$ 37,440	\$ 37,44) \$	37,440	\$ 37,440	\$	37,440	37,440	\$ 37,440	\$	37,440
Post-Dev TV (30% of Project Inv	estment) E	stimated New TV \$	18,511,062	\$ 18,899,794	19,296,690	\$ 19,701,920	\$ 20,115,660	\$ 20,538,08	9 \$	20,969,389	\$ 21,409,746	\$ 21	1,859,351	\$ 22,318,397	\$ 22,787,084	\$ 23,7	265,613
· ·	· —	ew TV - Initial TV) \$			19,259,250	\$ 19,664,480	\$ 20,078,220	\$ 20,500,64	9 \$	20,931,949	\$ 21,372,306	\$ 21	1,821,911	\$ 22,280,957	\$ 22,749,644	\$ 23,2	228,173
School Capture	Millage I																
State Education Tax (SET)	6.000	Incremental \$							5 \$ 4 \$	225 125,592			225 S				225 139,369
School Operating Tax	18.000	0 Initial \$							4 \$	674			674 S				674
Sch	ool Total 24.000	Incremental \$	332,323	5 339,322 \$	340,000	\$ 353,961	\$ 301,408	\$ 369,01	<u> </u>	376,775	\$ 384,702	<u> </u>	392,794	9 401,057	\$ 409,494	<u>ې د</u>	418,107
<u>Local Capture</u>	Millage I																
OAK COUNTY PARKS	0.239	Initial \$ Incremental \$							9 \$ 4 \$	5 ,007		\$ \$	5,220 S				5 ,556
		Initial \$			•			•	3 \$		•	\$	8 9	•			8
HURON-CLIN PARK	0.214									4,492			4,683		\$ 4,882	\$	4,985
GENERAL FUND	2 112	Initial \$						•	9 \$	79			79 9				79
	2.113	5 Incremental \$		•		· /		•	3 \$	44,242	•		46,123 S	•	· · · · · · · · · · · · · · · · · · ·	<u> </u>	49,095
LOCAL STREET I	0.350									7,341			7,653				8,146
	0.000	Initial \$		•		*			3 \$	18	•		18 5	•	· · · · · · · · · · · · · · · · · · ·		18
LOCAL STREET II	0.480	3 Incremental \$	8,873	9,060 \$	9,250	\$ 9,445	\$ 9,644	\$ 9,84	5 \$	10,054	\$ 10,265	\$	10,481	10,702	\$ 10,927	\$	11,156
LOCAL STREET III		Initial \$			11	\$ 11		•	1 \$				11 \$			\$	11
	0.293							<u> </u>		6,152			6,413	•			6,827
FIRE FUND	2 700	Initial \$						•	1 \$				101 5				101
	2.700					* * * * * * * * * * * * * * * * * * * *				56,516 45	· · · · · · · · · · · · · · · · · · ·	\$	58,919 \$	•	· · · · · · · · · · · · · · · · · · ·		62,716 45
SPECIAL POLICE I	1.195						•	•	5 \$ 5 \$	25,022			26,086				27,767
		Initial \$							9 \$	59			59				59
SPECIAL POLICE II	1.563	3 Incremental \$	28,880	29,488	30,108	\$ 30,741	\$ 31,388	\$ 32,04	9 \$	32,723	\$ 33,411	\$	34,114	34,832	\$ 35,565	\$	36,313
PATHWAY		Initial \$		5 7 \$	7	\$ 7	\$ 7	\$	7 \$	7	\$ 7	\$	7 \$	5 7	\$ 7	\$	7
	0.183						•	•		3,845	· · · · · · · · · · · · · · · · · · ·		4,009	•			4,267
RARA OPERATING	0.192	Initial \$ Incremental \$							7 \$	7 4,036		\$	7 S				7 4,478
	0.192	Initial \$							4 \$	4,030	•	\$	4,207	•			4,478
OPC TRANSPORTION	0.099							•		2,072			2,160				2,300
ODC ODEDATING		Initial \$						•	9 \$	9	•	\$	9 9				9
OPC OPERATING	0.237	7 Incremental \$	4,391	\$ 4,484	4,578	\$ 4,674	\$ 4,773	\$ 4,87	3 \$	4,976	\$ 5,080	\$	5,187	5,296	\$ 5,408	\$	5,521
LIBRARY OPERATING		Initial \$					•	•	9 \$	29		\$	29 \$		\$ 29	\$	29
	0.773									16,199			16,888				17,976
OAK COUNTY OPERATING	4.040	Initial \$							1 \$	151 84,565			151 S 88,161 S				151 93,842
	4.040	O Incremental \$ Initial \$							7 \$			\$	7 5				7
OAK INT SD-ALLOC	0.198									4,155			4,332				4,611
OAK INT SD-VTD		Initial \$							3 \$	118			118				118
CAR INT 3D-VTD	3.141	3 Incremental \$								65,754			68,549			\$	72,967
OAK COMM COLLEGE		Initial \$							9 \$	59			59 \$				59
Lo	1.570 cal Total 19.588		29,017	\$ 29,627 \$	30,251	\$ 30,887	\$ 31,537	\$ 32,20) \$	32,878	\$ 33,569	\$	34,276	34,997	\$ 35,733	\$	36,484
Non-Capturable Millages	Millage I																
ZOO AUTHORITY	0.099		1,833	5 1,871 \$	1,910	\$ 1,950	\$ 1,991	\$ 2,03	3 \$	2,076	\$ 2,120	\$	2,164	2,210	\$ 2,256	Ś	2,303
ART INSTITUTE	0.198	-			=				-	4,154			4,330				4,609
CH 20 DRAIN DEBT	0.041								5 \$	874			912				970
OPC BUILDING DEBT	0.234						-	•		4,917	•		5,126				5,456
ROCH SCH DEBT	5.900	New TV \$								123,719			128,970				137,267
Tatal Nam Cambunal	la Taura C 473	_															

Total Non-Capturable Taxes 6.4733

Table 3. Reimbursement Allocation Schedule

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of April 2, 2018

		Taxes	Local-Only Taxes		Total
55.1%	\$	7,819,425		\$	7,819,425
44.9%	\$	6,382,150 14,201,575	\$ - \$ -	\$ \$	6,382,150 14,201,575
100.0%	\$	14,201,575			
	100.0% 0.0%	\$ 100.0%	\$ 14,201,575 100.0% \$ 14,201,575	\$ 14,201,575 \$ - 100.0% \$ 14,201,575	\$ 14,201,575 \$ - \$ 100.0% \$ 14,201,575

Estimated Total Years of Plan: 24

12,238 \$

9,988 \$

12,495

10,199

11,986 \$

9,783 \$

11,739 \$

9,581 \$

		Plan Year	1	2	3	4	5	6	7	8	9	10
Total State Incremental Revenue			\$ 107,371	\$ 251,730	\$ 360,000	\$ 367,579	\$ 375,317	\$ 383,217	\$ 391,284	\$ 399,520	\$ 407,928	\$ 416,514
State Brownfield Revolving Fund (3 mills of S	ET)		\$ 13,421	\$ 31,466	\$ 45,000	\$ 45,947	\$ 46,915	\$ 47,902	\$ 48,910	\$ 49,940	\$ 50,991	\$ 52,064
Local Brownfield Revolving Fund (3% of capt	ure)		\$ 3,221	\$ 7,552	\$ 10,800	\$ 11,027	\$ 11,260	\$ 11,497	\$ 11,739	\$ 11,986	\$ 12,238	\$ 12,495
State TIR Available for Reimbursement			\$ 90,729	\$ 212,712	\$ 304,200	\$ 310,604	\$ 317,143	\$ 323,819	\$ 330,635	\$ 337,594	\$ 344,700	\$ 351,954
Total Local Incremental Revenue			\$ 87,635	\$ 205,460	\$ 293,829	\$ 300,015	\$ 306,331	\$ 312,779	\$ 319,363	\$ 326,085	\$ 332,948	\$ 339,955
BRA Administrative Fee			\$ 10,000	\$ 10,000	\$ 10,000	\$ 10,000						
Local Brownfield Revolving Fund (3% of capt	ure)		\$ 2,629	\$ 6,164	\$ 8,815	\$ 9,000	\$ 9,190	\$ 9,383	\$ 9,581	\$ 9,783	\$ 9,988	\$ 10,199
Local TIR Available for Reimbursement			\$ 75,006	\$ 189,296	\$ 275,014	\$ 281,014	\$ 287,141	\$ 293,395	\$ 299,782	\$ 306,302	\$ 312,959	\$ 319,756
Total State & Local TIR Available			\$ 165,735	\$ 402,009	\$ 579,214	\$ 591,619	\$ 604,283	\$ 617,214	\$ 630,417	\$ 643,896	\$ 657,659	\$ 671,711
		Beginning										
DEVELOPER		Balance										
DEVELOPER Reimbursement Balance	\$	14,201,575	\$ 14,035,840	\$ 13,633,831	\$ 13,054,617	\$ 12,462,998	\$ 11,858,715	\$ 11,241,501	\$ 10,611,084	\$ 9,967,188	\$ 9,309,529	\$ 8,637,818
					•							
STATE Reimbursement Balance	\$	7,819,425	\$ 7,728,697	\$ 7,515,984	\$ 7,211,784	\$ 6,901,180	\$ 6,584,037	\$ 6,260,219	\$ 5,929,584	\$ 5,591,990	\$ 5,247,290	\$ 4,895,336
Eligible Activities Reimbursement	\$	5,296,570	\$ 90,729	\$ 212,712	\$ 304,200	\$ 310,604	\$ 317,143	\$ 323,819	\$ 330,635	\$ 337,594	\$ 344,700	\$ 351,954
Environmental Eligible Activities	\$	5,296,570	\$ 90,729	\$ 212,712	\$ 304,200	\$ 310,604	\$ 317,143	\$ 323,819	\$ 330,635	\$ 337,594	\$ 344,700	\$ 351,954
Interest Reimbursement	\$	2,522,855	\$ -	\$ -	\$ -	\$ -						
Environmental Portion	\$	2,522,855	\$ -	\$ -	\$ -	\$ -						
Total STATE TIR Reimbursement			\$ 90,729	\$ 212,712	\$ 304,200	\$ 310,604	\$ 317,143	\$ 323,819	\$ 330,635	\$ 337,594	\$ 344,700	\$ 351,954
LOCAL Reimbursement Balance	\$	6,382,150	\$ 6,307,143	\$ 6,117,847	\$ 5,842,833	\$ 5,561,818	\$ 5,274,678	\$ 4,981,282	\$ 4,681,500	\$ 4,375,198	\$ 4,062,239	\$ 3,742,483
Eligible Activities Reimbursement	\$	4,323,017	\$ 75,006	\$ 189,296	\$ 275,014	\$ 281,014	\$ 287,141	\$ 293,395	\$ 299,782	\$ 306,302	\$ 312,959	\$ 319,756
Environmental Eligible Activities	\$	4,323,017	\$ 75,006	\$ 189,296	\$ 275,014	\$ 281,014	\$ 287,141	\$ 293,395	\$ 299,782	\$ 306,302	\$ 312,959	\$ 319,756
Interest Reimbursement	\$	2,059,133	\$ -	\$ -	\$ -	\$ -						
Environmental Portion	\$	2,059,133	\$ -	\$ -	\$ -	\$ -						
Total LOCAL TIR Reimbursement			\$ 75,006	\$ 189,296	\$ 275,014	\$ 281,014	\$ 287,141	\$ 293,395	\$ 299,782	\$ 306,302	\$ 312,959	\$ 319,756
Total Annual Developer Reimbursement			\$ 165,735	\$ 402,009	\$ 579,214	\$ 591,619	\$ 604,283	\$ 617,214	\$ 630,417	\$ 643,896	\$ 657,659	\$ 671,711
LOCAL BROWNFIELD REVOLVING												
FUND												
		LSRRF Year	0	0	0	0	0	0	0	0	0	0
LBRF Deposits			\$ 5,850	\$ 13,716	\$ 19,615	\$ 20,028	\$ 20,449	\$ 20,880	\$ 21,319	\$ 21,768	\$ 22,226	\$ 22,694

STATE

LOCAL

\$ 7,819,425 \$

no maximum \$

3,221 \$

2,629 \$

7,552 \$

6,164 \$

11,027 \$

9,000 \$

11,260 \$

9,190 \$

11,497 \$

9,383 \$

10,800 \$

8,815 \$

Table 3. Reimbursement Allocation Schedule

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of April 2, 2018

End Plan

Estimated Capture

Administrative Fees	\$ 240,000
State Revolving Fund	\$ 1,287,667
Local Revolving Fund	\$ 2,963,575

																						Enarian
		11		12		13	14	15		16		17	18		19	20	21		22	23		24
Total State Incremental Revenue	\$	425,279	\$	434,229	\$	443,367 \$	452,696	\$ 46	2,222 \$	471,948	\$	481,877 \$	492,016	\$	502,367 \$	512,935 \$	523,726	\$	534,743	\$ 545,	991 \$	557,476
State Brownfield Revolving Fund (3 mills of 5	SE. \$	53,160	\$	54,279	\$	55,421 \$	56,587	5 5	7,778 \$	58,993	\$	60,235 \$	61,502	\$	62,796 \$	64,117 \$	65,466	\$	66,843	\$ 68,	249 \$	69,685
Local Brownfield Revolving Fund (3% of capt	:ur\$	12,758	\$	13,027	\$	13,301 \$	13,581	5 1	3,867 \$	14,158	\$	14,456 \$	14,760	\$	15,071 \$	15,388 \$	15,712	\$	16,042		380 \$	16,724
State TIR Available for Reimbursement	\$	359,361	\$	366,924	\$	374,645 \$	382,529	\$ 39	0,578 \$	398,796	\$	407,186 \$	415,753	\$	424,500 \$	433,430	442,548	\$	451,858	\$ 461,	363 \$	471,067
Total Local Incremental Revenue	¢	347,110	Ś	354,414	¢	361,872 \$	369,487	÷ 27	7,262 \$	385,200	Ś	393,304 \$	401,579	¢	410,028 \$	418,654 \$	427,461	¢	436,453	\$ 115	534 \$	455,007
BRA Administrative Fee	ċ	10,000		10,000	•	10,000 \$,		0,000 \$	•	•	10,000 \$			10,000 \$	10,000 \$	•	•	10,000		000 \$	10,000
Local Brownfield Revolving Fund (3% of capt	ب کست	10,413		10,632		10,856 \$			1,318 \$	11,556		11,799 \$			12,301 \$	12,560 \$			13,094		369 \$	13,650
Local TIR Available for Reimbursement	ر الل. \$	326,696		333,782	•	341,016 \$			5,944 \$		ب \$	371,505 \$			387,727 \$	396,094			413,359		265 \$	431,357
		ŕ		•	-	,	,			·	•		·	-	, ,	, ,		·	,		·	<u>, </u>
Total State & Local TIR Available	\$	686,057	\$	700,706	\$	715,661 \$	730,931	\$ 74	6,521 \$	762,439	\$	778,691 \$	795,285	\$	812,227 \$	829,524 \$	847,185	\$	865,217	\$ 883,	527 \$	902,424
DEVELOPER																						
DEVELOPER Reimbursement Balance	Ś	7,951,761	Ś	7,251,055	\$	6,535,394 \$	5,804,463	\$ 5.05	7,942 \$	4,295,502	Ś	3,516,811 \$	2,721,526	Ś	1,909,299 \$	1,079,775	499,086	Ś	47,228	\$	0 \$	0
	<u>'</u>	,,	'	, , ,,,,,,,,	,	,	2,22 , 22 ,	-,	,- ,	,,	,	,	, ,	'	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,	,	<u>'</u>	, -			
STATE Reimbursement Balance	\$	4,535,975	\$	4,169,051	\$	3,794,406 \$	3,411,877	\$ 3,02	1,300 \$	2,622,504	\$	2,215,318 \$	1,799,565	\$	1,375,065 \$	941,634 \$	499,086	\$	47,228	\$	0 \$	C
Eligible Activities Reimbursement	\$	359,361	\$	366,924	\$	374,645 \$	382,529	\$ 39	0,578 \$	398,796	\$	99,650 \$; -	\$	- \$	- \$	-	\$	- (\$	- \$	-
Environmental Eligible Activities	\$	359,361	\$	366,924	\$	374,645 \$	382,529	39	0,578 \$	398,796	\$	99,650 \$	-	\$	- \$	- \$	-	\$	- 9	\$	- \$	-
Interest Reimbursement	\$	-	\$	-	\$	- \$	- 9	\$	- \$	-	\$	307,537 \$	415,753	\$	424,500 \$	433,430 \$	442,548	\$	451,858	\$ 47,	228 \$	-
Environmental Portion	\$	-	\$	-	\$	- \$	- 5	\$	- \$	-	\$	307,537 \$	415,753	\$	424,500 \$	433,430 \$	442,548	\$	451,858	\$ 47,	228 \$	-
Total STATE TIR Reimbursement	\$	359,361	\$	366,924	\$	374,645 \$	382,529	\$ 39	0,578 \$	398,796	\$	407,186 \$	415,753	\$	424,500 \$	433,430 \$	442,548	\$	451,858	\$ 47,	228 \$	-
LOCAL Reimbursement Balance	\$	3,415,786	\$	3,082,004	\$	2,740,988 \$	2,392,586	\$ 2,03	6,642 \$	1,672,998	\$	1,301,493 \$	921,961	\$	534,235 \$	138,141	-	\$	- ;	\$	- \$	-
Eligible Activities Reimbursement	\$	326,696	\$	333,782	\$	341,016 \$	348,402	33	3,453 \$	-	\$	- \$	-	\$	- \$	- \$	-	\$	-	\$	- \$	-
Environmental Eligible Activities	\$	326,696	\$	333,782	\$	341,016 \$	348,402	\$ 33	3,453 \$	-	\$	- \$	-	\$	- \$	- \$	-	\$	- 9	\$	- \$	-
Interest Reimbursement	\$	-	\$	-	\$	- \$	- 5	5 2	2,491 \$	363,644	\$	371,505 \$	379,532	\$	387,727 \$	396,094 \$	138,141	\$	- 9	\$	- \$	
Environmental Portion	\$	-	\$	-	\$	- \$	- 5	5 2	2,491 \$	363,644	\$	371,505 \$	379,532	\$	387,727 \$	396,094 \$	138,141	\$	- 9	\$	- \$	-
Total LOCAL TIR Reimbursement	\$	326,696	\$	333,782	\$	341,016 \$	348,402	\$ 35	5,944 \$	363,644	\$	371,505 \$	379,532	\$	387,727 \$	396,094 \$	138,141	\$	- :	\$	- \$	-
Total Annual Developer Reimbursement	\$	686,057	\$	700,706	\$	715,661 \$	730,931	\$ 74	6,521 \$	762,439	\$	778,691 \$	795,285	\$	812,227 \$	829,524 \$	580,689	\$	451,858	\$ 47,	228 \$	-
LOCAL PROWNERS DEVOLVING																						
LOCAL BROWNFIELD REVOLVING FUND																						
IOND		0		0		0	0	0		0		0	0		0	0	0		1	2		3
LBRF Deposits	\$	23,172	\$		\$	24,157 \$	24,666	0	5,185 \$	25,714	\$	26,255 \$	0	\$	27,372 \$	27,948 \$	295,032	\$	442,495	\$ 849.	768 \$	932,799
STATE	Ś	12,758	-	13,027	-	13,301 \$			3,867 \$	•	-	14,456 \$			15,071 \$	15,388 \$			16,042		135 \$	487,792
LOCAL	ا ج	10,413		10,632		10,856 \$			1,318 \$			11,799 \$			12,301 \$	12,560 \$			426,453			445,007
200/12		10,713	Y	10,032	Y	10,030 7	11,000	, 1	-,5±0 ¥	11,550	Y	11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12,047	Y	12,501 9	12,500 4	273,320	Y	.20,433	, ,	,, ,	443,007

Appendix A Brownfield Plan

ROCHESTER HILLS BROWNFIELD REDEVELOPMENT AUTHORITY

BROWNFIELD PLAN

Parcels 15-29-101-022 and 15-29-101-023, Northeast Corner of Hamlin and Adams Roads, Rochester Hills, Michigan

PREPARED BY Rochester Hills Brownfield Redevelopment Authority

1000 Rochester Hills Drive

Rochester Hills, Michigan Rochester Hills 48309

Contact Person: Sara Roediger Email: roedigers@rochesterhills.org

Phone: 248-841-2573

AKT Peerless

22725 Orchard Lake Road Farmington, Michigan 48336 Contact Person: Bret Stuntz Email: stuntzb@aktpeerless.com

Phone: 248-615-1333

PROJECT # 3679f6

REVISION DATE February 20-, 2018

BRA APPROVAL

Table of Contents

1.0	INTRO	DUCTION4
2.0	GENER	AL PROVISIONS5
	2.1	DESCRIPTION OF ELIGIBLE PROPERTY (SECTION 13 (L)(H)
	2.2	BASIS OF ELIGIBILITY (SECTION 13 (1)(H), SECTION 2 (M)), SECTION 2(R)6
	2.3	SUMMARY OF ELIGIBLE ACTIVITIES AND DESCRIPTION OF COSTS (SECTION 13 (1)(A),(B)).17
	2.4	ESTIMATE OF CAPTURED TAXABLE VALUE AND TAX INCREMENT REVENUES (SECTION 13(1)(C)); IMPACT OF TAX INCREMENT FINANCING ON TAXING JURISDICTIONS (SECTION 13(1)(G), SECTION 2(EE))
	2.5	IMPACT ON TAXING JURISDITIONS (Section 13(2)(G))26
	2.6	PLAN OF FINANCING (SECTION 13(1)(D)); MAXIMUM AMOUNT OF INDEBTEDNESS (SECTION 13(1)(E))
	2.7	DURATION OF BROWNFIELD PLAN (SECTION 13(1)(F))29
	2.8	EFFECTIVE DATE OF INCLUSION IN BROWNFIELD PLAN
	2.9	DISPLACEMENT/RELOCATION OF INDIVIDUALS ON ELIGIBLE PROPERTY (SECTION 13(1)(I-L)) 29
	2.10	LOCAL BROWNFIELD REVOLVING FUND ("LBRF") (SECTION 8, SECTION 13(5))29
	2.11	OTHER INFORMATION30
<u>ATT/</u>	<u>ACHME</u>	<u>NTS</u>
Attac	hment /	۱ Site Maps
•	Figur	re 1 – Scaled Property Location Map
•	_	re 2 – Eligible Property Boundary Map
•	_	re 3 – Map Showing Proposed New Parcel Boundaries re 4 – Proposed Truck Route Map
Attac	hment I	3 Legal Description
Attac	hment (CTables
•		e 1 – Eligible Activities
•		2 – Tax Increment Revenue Estimates
•	Table	e 3 – Reimbursement Allocation Schedule
Attac	hment I	D Environmental Documentation

PROJECT SUMMARY

PROJECT NAME Legacy Rochester Hills - Redevelopment and Reuse of

Properties Located at the northeast corner of Hamlin

and Adams Roads, Rochester Hills, Michigan

DEVELOPER Goldberg Companies, Inc.

c/o Mr. Eric Bell

25101 Chagrin Boulevard, Suite 300

Beachwood, Ohio 44122

ELIGIBLE PROPERTY LOCATION The Eligible Property is located at the northeast corner

of Hamlin and Adams Roads, Rochester Hills, Michigan. Parcel ID Numbers 15-29-101-022 and 15-29-101-023.

TYPE OF ELIGIBLE PROPERTY Facility

SUBJECT PROJECT Legacy Rochester Hills (Project) consists of the redevelopment of the subject property, which

redevelopment of the subject property, which is located at the northeast corner of Hamlin and Adams Roads in

the City of Rochester Hills. The final plans for the redevelopment have not been completed. However, this Project will include remediation of contaminated soils and construction of a new residential apartment complex with approximately 368 units and onsite

surface parking. This Project will put an underutilized property into productive use and return it to the City's

tax rolls.

In addition to the economic benefits of this development to Rochester Hills, environmental activities are anticipated that would provide a safer and

healthier community to the public.

The Project is seeking approval of Tax Increment Financing (TIF). Construction is expected to begin in

2018.

ELIGIBLE ACTIVITIES Department Specific Activities and preparation of a

Brownfield Plan and Act 381 Work Plan

DEVELOPER'S REIMBURSABLE \$ 9,619,587 (Est. Eligible Activities & Contingency)

COSTS \$ 4,581,988 (Interest)

\$14,201,575

PROJECTED DURATION OF 24 years (Local capture ends in Year 21, followed by 3

CAPTURE years of revolving fund capture)

ESTIMATED TOTAL CAPITAL

INVESTMENT \$50 million

INITIAL TAXABLE VALUE \$37,440

LIST OF ACRONYMS AND DEFINITIONS

BEA Baseline Environmental Assessment (Michigan process

to provide new property owners and/or operators with

exemptions from environmental liability)

BFP OR PLAN Brownfield Plan

DEVELOPER Goldberg Companies, Inc. or other entity as approved

by the Rochester Hills Brownfield Redevelopment

Authority.

ELIGIBLE PROPERTY Property for which eligible activities are identified under

a Brownfield Plan, referred to herein as "the subject

property".

ESA Environmental Site Assessment

LBRF Local Site Remediation Revolving Fund

MDEQ Michigan Department of Environmental Quality
MEDC Michigan Economic Development Corporation

MSF Michigan Strategic Fund

PHASE I ESA An environmental historical review and site inspection

(no soil and/or groundwater sampling and analysis)

PHASE II ESA Environmental subsurface investigation (includes soil,

soil gas, and/or groundwater sampling and analysis)

RCC Residential Cleanup Criteria

RHBRA Rochester Hills Brownfield Redevelopment Authority

SUBJECT PROPERTY The Eligible Property, located at the northeast corner of

Hamlin and Adams Roads, in Rochester Hills, Michigan.

It comprises 2 parcels.

TIF Tax Increment Financing (TIF describes the process of

using TIR—i.e., TIF is the use of TIR to provide financial

support to a project)

TIR Tax Increment Revenue (new property tax revenue,

usually due to redevelopment and improvement that is generated by a property after approval of a Brownfield

Plan)

BROWNFIELD PLAN

Northeast Corner of Hamlin and Adams Roads Rochester Hills, Michigan 48309

1.0 Introduction

The City of Rochester Hills, Michigan (the "City"), established the Rochester Hills Brownfield Redevelopment Authority (the "Authority") on November 13, 2002, pursuant to Michigan Public Act 381 of 1996, as amended ("Act 381"). The primary purpose of Act 381 is to encourage the redevelopment of eligible property by providing economic incentives through tax increment financing for certain eligible activities.

A primary purpose of this Brownfield Plan is to promote the redevelopment of, and investment in, certain "Brownfield" properties within the City. Inclusion of the subject property in a brownfield plan will facilitate financing of environmental response and other eligible activities at eligible properties. This will enable eligible taxpayers to invest in revitalization of eligible sites, commonly referred to as "Brownfields" that otherwise would be economically unfeasible to redevelop. By facilitating redevelopment of Brownfield properties, Brownfield plans are intended to promote economic growth for the benefit of the residents of the City and all taxing units located within and benefited by the Authority.

The identification or designation of a developer that is the subject of this Brownfield Plan (the "subject property") shall not be integral to the effectiveness or validity of this Brownfield Plan. This Brownfield Plan is intended to apply to the subject property identified in this Brownfield Plan. With respect to tax increment revenues proposed to be captured from that subject property, the Brownfield Plan is to identify and authorize the eligible activities to be funded by such tax increment revenues. Any change in the proposed developer shall not necessitate an amendment to this Brownfield Plan, affect the application of this Brownfield Plan to the subject property, or impair the rights available to the Authority under this Brownfield Plan. Any change in the proposed use of the subject property (particularly any proposed change in use of Parcel B) may require an Amendment and is subject to review by the Authority.

This Brownfield Plan is intended to be a living document, which may be modified or amended in accordance with the requirements of Act 381, as necessary to achieve the purposes of Act 381. If uses other than those currently planned by the Developer (i.e., residential use on the western Parcel A, and non-residential use, including open natural area and surface parking on the eastern Parcel B) are pursued in the future, the Brownfield Plan shall be amended if support of the new use through tax increment revenue is desired. The applicable sections of Act 381 are noted throughout the Brownfield Plan for reference purposes.

This Brownfield Plan contains information required by Section 13(1) of Act 381.

Legacy Rochester Hills (Project) consists of the redevelopment of the subject property. The final plans for the redevelopment have not been completed. However, this Project will include the remediation of contaminated soils and construction of a new residential apartment complex with approximately 368

units with onsite surface parking. This Project will put underutilized property back to productive use and will generate new tax revenue for the City. Although the Project is 100% residential, up to 10 new full-time permanent jobs are expected as well as 400 temporary construction jobs during the course of redevelopment.

In addition to the economic benefits of this development to the City of Rochester Hills, environmental activities are anticipated that would provide a safer and healthier community to the public and environment alike.

The Project is seeking approval of Tax Increment Financing (TIF). Construction is expected to begin in 2018.

2.0 General Provisions

The following sections detail information required by Act 381.

The project is for the redevelopment of the former Christensen Dump, located on two parcels northeast of the intersection of Hamlin and Adams Roads. The Christensen Dump operated from the mid-1950s until the mid-1960s. Later, during the 1960s and early-1970s, 55-gallon drums (which contained a variety of chemicals including paint and solvents) were dumped illegally on the property. The property has remained unimproved with no apparent use since that time. MDEQ began cleanup activities on the property in the 1990s, but due to financial constraints was unable to complete the remediation.

Both parcels are heavily contaminated. Analytical results of previous environmental investigations conducted on the two parcels indicate that concentrations of select metals, pesticides, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) and polynuclear aromatic compounds (PNAs) were detected in soil and/or groundwater above Michigan Department of Environmental Quality (MDEQ) Residential Cleanup Criteria (RCC).

Because of both heavy contamination and geotechnical issues from dumping, the properties have been unable to attract development or use since the 1960s. The area is attractive for new construction, but the costs associated with site conditions are so high that all previous efforts have been stymied. The most recent proposal, in 2008, failed because the redevelopment plan was unable to attract funding. In addition to financial viability, the current Legacy Rochester Hills development offers significant improvements over previous proposals, including: (1) this development entails more extensive cleanup activities on the western side of the property; (2) the proposed residential use is a better fit for the neighborhood; and (3) remediation activities planned for the former landfill include creation of a conservation area, which will expand upon municipal greenspace to the east of the subject property.

The proposed redevelopment has two components. The first, on the western portion of the property (Parcel A), involves remediation of contamination and construction of approximately 368 high-quality rental residential units. The second, on the eastern end of the property (Parcel B), is limited to environmental remediation activities in the areas of most significant contamination (excavation and removal of certain non-hazardous contaminated soils, and capping and isolating the area of most significant impact). Together, the two components will result in economically productive rehabilitation and reuse of properties that for decades have been a blight in the community. In addition to the significant benefits of environmental cleanup, the project will result in an immediate increase in tax revenue for some taxing jurisdictions.

BROWNFIELD PLAN | NORTHEAST CORNER OF HAMLIN AND ADAMS ROADS, ROCHESTER HILLS, MI REVISION DATE: FEBRUARY 20, 2018

2.1 Description of Eligible Property (Section 13 (I)(h)

The Eligible Property ("subject property") is located at the northeast corner of Hamlin and Adams Roads, in the northwest ¼ of Section 29 in the City of Rochester Hills (T.3N. /R.11E.), Oakland County, Michigan. The subject property is situated northeast of the intersection of Hamlin and Adams Roads. The subject property currently consists of two parcels that contain approximately 28 acres. It is anticipated that the property boundary separating the two parcels will be redrawn prior to the commencement of the project; this anticipated boundary is shown on Figure 3, separating Parcel A and Parcel B. It should be noted that any future parcel reconfigurations or divisions will not affect the Eligible Property boundary, nor would they necessitate a Plan amendment. Moreover, while it is anticipated that all parcels will be the beneficiary of Department Specific Activities (i.e., environmental activities), they might not be owned by the same entity.

The subject property is in an area of Rochester Hills ("City") that is characterized by residential properties and is served by surface roadways, municipal sanitary sewer and water, and electrical and gas utilities.

The following table describes each parcel which comprises the subject property. See Attachment A, Figure 2 – Eligible Property Boundary Map.

Address	Tax Identification Number	Basis of Brownfield Eligibility	Approximate Acreage
No Address	15-29-101-022	Facility	18.8
No Address	15-29-101-023	Facility	9.2

Eligible Property Information

The subject property is zoned Residential (R2). The subject property consists of undeveloped land and does not contain any structures. A chain link fence to deter entry into the most highly contaminated portion is present on the eastern portion of the eastern parcel.

Attachment A includes site maps of the Eligible Property, refer to: Figure 1, Scaled Property Location Map and Figure 2, Eligible Property Boundary Map (which includes lot dimensions). The legal descriptions of the parcels included in the Eligible Property are presented in Attachment B.

The parcels and all tangible real and personal property located thereon will comprise the Eligible Property, which is referred to herein as the "subject property."

2.2 Basis of Eligibility (Section 13 (2)(h), Section 2 (n)), Section 2(o)

The subject property is considered "Eligible Property" as defined by Act 381, Section 2 because: (a) the subject property was previously utilized as a commercial property; and (b) each of the parcels comprised by the subject property has been determined to be a "facility." Due to the contamination present both onsite and offsite, redevelopment requires extensive environmental response activities, including removal of contaminated soils and installation of due care engineering controls.

Historical use of the property consists of the following:

- 1940 early 1950s: agricultural land (including slaughterhouse operations)
- Mid-1950s Mid-1960s: commercial landfill

• 1960s – Present: undeveloped

Several environmental investigations have been conducted on the subject property. Refer to Attachment D for additional details and documentation on site environmental conditions. Hazardous substances known to exceed residential cleanup criteria compounds (which form the basis for the facility designations), Chemical Abstract Service (CAS) numbers, sample location, depths, and media affected are summarized in the following tables.

On the western parcel (Tax Identification No. 15-29-101-022):

Summary of Soil Analytical Results

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Arsenic	7440382	TP-2, TP-21, 2-3 (0-1'), 2-3 (10-12'), AKT-5 (20-22'), SB-5 (10-14'), SB-6 (18-20'), SB-9 (18-20'), SB-10 (18-20'), SS-3 (4-6'), SS-4 (2-4'), SS-6 (0-2'), SS-9 (2-4'), SS-10 (2-4')	DWP / 4,600 GSIP / 4,600 DC / 7,600	25,000 / SB-5 (10-14')
Acenaphthene	83329	DUP-1 [EP-5 (6')]	GSIP / 8,700	22,100 / DUP-1 [EP-5 (6')]
Benzo(a)pyrene	50328	DUP-1 [EP-5 (6')]	DC / 2,000	4,500 / DUP-1 [EP-5 (6')]
beta- Hexachlorocyclohexane	319857	TP1W	GSIP / 37	65 / TP1W
Cadmium	7440439	EP-31 (0.5-1'), SS-6 (0-2')	DWP / 6,000	39,000 / EP-31 (0.5-1')

BROWNFIELD PLAN | NORTHEAST CORNER OF HAMLIN AND ADAMS ROADS, ROCHESTER HILLS, MI REVISION DATE: FEBRUARY 20, 2018

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Chromium (total)	18540299	TP-2, TP-3-1, TP-21, 2-3 (0-1'), 2-3 (10-12'), EP-5 (6'), DUP-1 [EP-5 (6')], DUP-2 [EP-14 (7')], EP-31 (0.5-1'), EP-37 (0.5-1'), DUP-5 [EP-37 (0.5-1')], SB-3 (18-20'), SB-5 (10-14'), SB-6 (18-20'), SB-10 (18-20'), SB-12 (18-20'), SS-1 (0-2'), SS-2 (4-6'), SS-3 (4-6'), SS-4 (2-4'), SS-5 (2-4'), SS-6 (0-2'), SS-7 (4-6'), SS-8 (0-2'), SS-9 (2-4'), SS-10 (2-4'), TR1N, TR1S, TR1W, TR1Bottom-N, TR1Bottom-S, TR2-N, TR2-S, TR2-East, TR2-West, TR2-B North, TR2-B South, TP1N, TP1Bottom-S	DWP/ 30,000 GSIP / 3,300	91,000 / SS-3 (4-6')
Dibenzofuran	132649	DUP-1 [EP-5 (6')]	GSIP / 1,700	26,400 / DUP-1 [EP-5 (6')]
Fluorene	86737	DUP-1 [EP-5 (6')]	GSIP / 5,300	24,700 / DUP-1 [EP-5 (6')]
Fluoranthene	206440	DUP-1 [EP-5 (6')]	GSIP / 5,500	19,000 / DUP-1 [EP-5 (6')]
Lead	7439921	TP-2, TP-21, EP-31 (0.5-1'), SS-6 (0-2')	DC / 400,000	660,000 / TP-2
Mercury	7439976	TP-21, EP-14 (7'), DUP-2 [EP-14 (7')], EP-31 (0.5-1'), EP-37 (0.5-1'), DUP-5 [EP-37 (0.5-1')], SS-6 (0-2'), SS-9 (2-4')	GSIP / 50	500 / SS-6 (0-2')
2-Methylnaphthalene	91576	DUP-1 [EP-5 (6')]	GSIP / 4,200	16,500 / DUP-1 [EP-5 (6')]
Naphthalene	91203	EP-5 (6'), DUP-1 [EP-5 (6')], EP-31 (0.5-1')	DWP / 35,000 GSIP / 730	142,000 / DUP-1 [EP-5 (6')]
Phenanthrene	85018	EP-5 (6'), DUP-1 [EP-5 (6')]	GSIP / 2,100	51,400 / DUP-1 [EP-5 (6')]

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Polychlorinated biphenyls	1336363	DUP-1 [EP-5 (6')]	DC / 4,000	22,100 / DUP-1 [EP-5 (6')]
Selenium	7782492	EP-31 (0.5-1'), SS-6 (0-2'), SB-1 (19-20'), SB-3 (18-20'), SB-6 (18-20'), SB-8 (18-20'), SB-9 (18-20'), SB-10 (18-20')	GSIP / 400	1,000 / SB-1 (19- 20')
Silver	7440224	EP-37 (1-2')	GSIP / 100	2,070 / EP-37 (1- 2')
Xylenes	95476	EP-31 (0.5-1')	GSIP / 820	930 / EP-31 (0.5- 1')

Table Notes:

ug/kg – microgram per kilogram

DWP – Drinking Water Protection Criteria

GSIP – Groundwater Surface Water Interface Protection Criteria

DC - Direct Contact Criteria

Summary of Groundwater Analytical Results

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Arsenic	7440382	MW-13D, AKT-5W	DW/ 10 GSI/10	21 / AKT-5W
Chromium	7440473	AKT-5W	GSI / 11	18 / AKT-5W
Lead	7439921	AKT-5W	DW/ 4	42 / AKT-5W

Table Notes:

ug/L – microgram per liter

DW – Drinking Water Criteria

GSI – Groundwater Surface Water Interface Criteria

On the eastern parcel (Tax Identification No. 15-29-101-023):

Summary of Soil Analytical Results

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Antimony	7440360	AKT-8 (3-5')	DWP / 4,300	6,140 / AKT-8 (3- 5')
Arsenic	7440382	GP-1 (4-7'), GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-7 (4-8'), GP-8 (0-2'), GP-8 (9-10.5'), GP-9 (4-6'), GP-9 (6-7.5'), GP-10 (6-8'), GP-10 (8-10'), GP-11 (4.5-5'), GP-12 (0-2'), MW-9D (2-4'), MW-9D (4-6'), TP-16b, EP-28 (8'), EP-33 (15'), EP-48 (6'), AKT-8 (3-5')	DWP / 4,600 GSIP / 4,600 DC / 7,600	36,000 / GP-3 (2-6')
Benzene	71432	GP-1 (4-7'), GP-4 (2.5-4'), EB-23 (3-5')	DWP / 100	800 / EB-23 (3-5')
Benzo(a)anthracene	56553	GP-4 (2.5-4'), EB-20 (5-7')	DC / 20,000	33,000 / GP-4 (2.5-4')
Benzo(a)pyrene	50328	GP-1 (4-7'), GP-4 (2.5-4'), GP-6 (2-4'), GP-10 (6-8'), EB-7 (1-3'), EB-11 (10-12'), Duplicate [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-23 (3-5'), EB-24 (8-10'), EB-25 (3-4'), EB-26 (1-3'), EB-27 (1-3'), EB-29 (1-3'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-31 (3-5'), EB-31 (7-9'), EB-32 (1-3'), EB-35 (1-3'), EB-39 (3-5'), EB-40 (3-5'), Duplicate 5 [EB-40(3-5')]	DC / 2,000	29,000 / GP-4 (2.5-4')
Benzo(b) fluoranthene	205992	GP-4 (2.5-4')	DC / 20,000	48,000 / GP-4 (2.5-4')
Bis(2- ethylhexyl)phthalate	117817	GP-7 (4-8')	DC / 2,800,000 SSSL / 10,000,000	37,000,000 / GP-7 (4-8')
n-Butylbenzene	104518	EB-9 (8-10'), Duplicate 3 [EB-13 (13-15')]	DWP / 1,600	10,000 / EB-9 (8- 10')

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
sec-Butylbenzene	135998	GP-1 (4-7'), GP-4 (2.5-4'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	DWP / 1,600	50,000/ EB-12 (8- 10')
Cadmium	7440439	GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-7 (4-8'), GP-8 (0-2'), TP-16b, EB-1 (3-5'), EP-23 (2'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), AKT-8 (3-5')	DWP / 6,000	61,000 / GP-8 (0- 2')
Carbon tetrachloride	56235	GP-6 (12-13.5')	DWP / 100	110 / GP-6 (12- 13.5')
Carbazole	86748	GP-6 (2-4'), GP-10 (6-8')	GSIP / 1,100	5,200 / GP-6 (2-4')
Chromium (total)	18540299	SB-2 (14-16'), GP-1 (4-7'), GP-2 (13-15'), GP-3 (2-6'), GP-3 (10-12'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-6 (12-13.5'), GP-7 (4-8'), GP-7 (9-10.5'), GP-8 (0-2'), GP-8 (9-10.5'), GP-9 (4-6'), GP-9 (6-7.5'), GP-10 (6-8'), GP-10 (8-10'), GP-11 (4-5.5'), GP-11 (5.5-7'), GP-12 (0-2'), GP-13 (16-18'), MW-9D (2-4'), MW-9D (4-6'), TP-16B, EB-1 (3-5'), EP-19 (0.5-1'), EP-22 (6'), Duplicate 3 [EP-22 (6')], EP-23 (2'), EP-28 (8'), EP-30 (7'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), EP-48 (6'), AKT-8 (3-5'), AKT-9 (8-10')	DWP/ 30,000 GSIP / 3,300 PSI / 260,000 DC / 2,500,000	2,880,000 / GP-5 (4-8')
Di-n-butyl phthalate	84742	GP-4 (11-12'), EB-12 (10-11'), EB-38 (3-5')	GSIP / 11,000	61,000 / GP-4 (11- 12')

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Ethylbenzene	100414	GP-1 (4-7'), GP-4 (2.5-4'), GP-5 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), AKT-8 (3-5')	DWP / 1,500 GSIP / 360 SVIAI / 87,000 SSSL / 140,000	590,000 / EB-12 (8-10')
Fluorene	86737	EB-20 (5-7'), AKT-8 (3-5')	GSIP / 5,300	6,000 / EB-20 (5- 7')
Fluoranthene	206440	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-10 (6-8'), EB-11 (10-12'), EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-23 (3-5'), EB-24 (8-10'), EB-25 (3-4'), EB-26 (1-3'), EB-27 (1-3'), EB-28 (8-10'), EB-29 (1-3'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-32 (1-3'), EB-38 (3-5'), EB-39 (3-5'), EB-40 (3-5')]	GSIP / 5,500	97,000 / GP-4 (2.5-4')
Isopropyl benzene	98828	EB-11 (10-12'), EB-12 (8-10'), EB-19 (4-5'), EB-21 (8-10'), EB- 22 (6-8'), EB-23 (3-5'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	GSIP / 3,200	70,000 / EB-12 (8- 10')
Lead	7439921	GP-1 (4-7'), GP-3 (2-6'), GP-4 (2.5-4'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-7 (4-8'), GP-8 (0-2'), TP-16B, EB-1 (3-5'), EP-23 (2'), EP-28 (8'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), AKT-8 (3-5')	DWP / 700,000 DC / 400,000	2,450,000 / GP-5 (4-8')

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Mercury	7439976	SB-3 (2-4'), GP-1 (4-7'), GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-7 (4-8'), GP-7 (9-10.5'), GP-9 (4-6'), GP-10 (8-10'), TP-16b, EB-1 (3-5'), EP-19 (0.5-1'), EP-22 (6'), Duplicate 3 [EP-22 (6')], EP-23 (2'), EP-28 (8'), EP-30 (7'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), EP-44 (6'), EP-48 (6'), AKT-8 (3-5')	DWP / 1,700 GSIP / 50	2,530 / AKT-8 (3- 5')
2-Methylnaphthalene	91576	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-24 (8-10'), EB-28 (8-10'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), EB-39 (3-5'), AKT-8 (3-5')	DWP / 57,000 GSIP / 4,200	388,000,000 / EB- 39 (3-5')
Naphthalene	91203	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-12 (10-11'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-28 (8-10'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), EB-39 (3-5'), EB-40 (3-5'), Duplicate 5 [EB-40 (3-5')], AKT-8 (3-5'), AKT-9 (8-10'), AKT-8 (3-5')	DWP / 35,000 GSIP / 730 SVIAI / 250,000 VSIC / 300,000	400,000 / EB-12 (8-10')
Nickel	7440020	AKT-8 (3-5')	DWP / 100,000	339,000 / AKT- 8(3-5')

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Phenanthrene	85018	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-6 (2-4'), GP-10 (6-8'), EB-11 (10-12'), Duplicate 3 [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-20 (5-7'), EB-22 (6-8'), EB-23 (3-5'), EB-24 (8-10'), EB-25 (3-4'), EB-26 (1-3'), EB-27 (1-3'), EB-29 (1-3'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-35 (1-3'), EB-40 (3-5'), Duplicate 5 [EB-40 (3-5')], AKT-8 (3-5')	GSIP / 2,100	33,000 / GP-6 (2-4')
Polychlorinated biphenyls	1336363	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-7 (4-8'), GP-7 (4-8'), GP-7 (9-10.5'), GP-8 (0-2'), EB-10 (10-12'), Duplicate 2 [EB-10 (10-12')], EB-11 (1-3'), EB-11 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-18 (3-5'), EB-19 (4-5'), EB-19 (5-7'), EB-19 (8-10'), EB-20 (1-3'), EB-20 (3-5'), EB-20 (5-7'), EB-21 (3-5'), EB-21 (8-10'), EB-22 (3-5'), EB-22 (6-8'), EB-22 (10-12'), EB-23 (3-5'), EB-23 (5-7'), EB-23 (7-9'), EB-28 (1-3'), EB-28 (3-5'), EB-28 (8-10'), EB-29 (3-5'), EB-29 (8-9'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-30 (3-5'), EB-31 (1-3'), EB-37 (1-3'), EB-38 (3-5'), EB-38 (8-10'), EB-38 (3-5'), EB-39 (3-5'), EB-39 (1-3'), EB-39 (3-5'), EB-40 (1-3'), EB-40 (3-5'), Duplicate 5 [EB-40 (3-5')], EB-40 (8-10'), Duplicate 4 [EP-33 (7')], AKT-8 (3-5')	DC / 4,000 VSIC / 240,000	2,300,000 / GP-7 (4-8')

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
n-Propylbenzene	103651	GP-1 (4-7'), GP-4 (2.5-4'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 2 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	DWP / 1,600	110,000 / EB-12 (8-10')
Selenium	7782492	GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-7 (4-8'), GP-8 (0-2'), TP-16b, EB-1 (3-5'), EP-23 (2'), EP-30 (7'), EP-33 (15'), AKT-8 (3-5')	GSIP / 400	1,700 / GP-4 (2.5-4')
Silver	7440224	SB-2 (14-16'), SB-3 (2-4'), GP-1 (4-7'), GP-2 (13-15'), GP-3 (2-6'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-5 (11-14'), GP-6 (2-4'), GP-7 (4-8'), EP-23 (2'), EP-33 (7'), Duplicate 4 [EP-33 (7')], EP-33 (15'), AKT-8 (3-5')	DWP / 4,500 GSIP / 100	90,000 / GP-2 (13- 15')
Toluene	10883	EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB- 38 (3-5')	DWP / 16,000 GSIP / 5,400 SVIAI / 330,000 SSSL / 110,000	400,000 / EB-12 (8-10')
Trichloroethylene	79016	GP-3 (10-12'), GP7 (4-8')	DWP / 100	410 / GP-3 (10- 12')
1,2,4- Trimethylbenzene	95636	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-7 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5'), AKT-9 (8-10')	DWP / 2,100 GSIP / 570 DC / 110,000 SSSL / 110,000	760,000 / EB-12 (8-10')

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
1, 3, 5- Trimethylbenzene	108678	GP-4 (2.5-4'), EB-9 (9-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')]	DWP / 1,800 GSIP / 1,100 SSSL / 150,000	280,000 / EB-12 (8-10')
Xylenes	95476	GP-1 (4-7'), GP-4 (2.5-4'), GP-4 (11-12'), GP-5 (4-8'), GP-7 (4-8'), EB-9 (8-10'), EB-11 (10-12'), EB-12 (8-10'), EB-13 (13-15'), Duplicate 3 [EB-13 (13-15')], EB-19 (4-5'), EB-21 (8-10'), EB-22 (6-8'), EB-23 (3-5'), EB-30 (1-3'), Duplicate 4 [EB-30 (1-3')], EB-38 (3-5')	DWP / 5,600 GSIP / 820 SSSL / 150,000	2,070,000 / EB-12 (8-10')
Zinc	7440666	GP-5 (4-8')	DWP / 2,400,000	7,100,000 / GP-5 (4-8')

Table Notes:

ug/kg – microgram per kilogram

DWP – Drinking Water Protection Criteria

GSIP – Groundwater Surface Water Interface Protection Criteria

PSI- Particulate Soil Inhalation Criteria

SVIAI – Soil Volatilization to Indoor Air Inhalation Criteria

VSIC – Infinite Source Volatile Soil Inhalation Criteria

DC – Direct Contact Criteria

SSSL – Soil Saturation Concentration Screening Levels

Summary of Groundwater Analytical Results

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Arsenic	7440382	MW-2D, AKT-9W, AKT-10W	DW/ 10 GSI/10	33 / AKT-9W
Benzene	71432	AKT-9W	DW / 5	60 / AKT-9W

Parameter	CAS Number	Sample Identification with Criteria Exceedance	Part 201 Residential Criteria Exceeded/ Established Criteria (ug/kg)	Maximum Concentration (ug/kg)/Sample Location
Chromium	7440473	MW-6	GSI / 11	15 / MW-6
Di-n-butyl phthalate	84742	AKT-9W	GSI / 9.7	55 / AKT-9W
Ethylbenzene	100414	AKT-9W	DW / 74 GSI / 18	1,090 / AKT-9W
4-Methyl-2- pentanone (MIBK)	108101	AKT-9W	DW / 1,800	4,000 / AKT-9W
Naphthalene	91203	AKT-9W	GSI / 11	90 / AKT-9W
Selenium	7782492	AKT-9W	GSI / 5	8 / AKT-9W
Toluene	108883	AKT-9W	DW / 790 GSI / 270	2,220 / AKT-9W
1,2,4- Trimethylbenzene	95636	AKT-9W	DW / 63 GSI / 17	730 / AKT-9W
1,3,5- Trimethylbenzene	108678	AKT-9W	DW / 72 GSI / 45	120 / AKT-9W
Vinyl Chloride	75014	MW-4D	DW/ 2	3.5 / MW-4D
Xylenes	1330207	AKT-9W	DW / 280 GSI / 41	4,660 / AKT-9W

Table Notes:

ug/L - microgram per liter

DW - Drinking Water Criteria

GSI – Groundwater Surface Water Interface Criteria

Based on this information, Parcels A and B are a "facility" as defined in Part 201 of Natural Resources and Environmental Protection Act (NREPA), Michigan Public Act (PA) 451, as amended.

2.3 Summary of Eligible Activities and Description of Costs (Section 13 (2)(a),(b))

The "eligible activities" that are intended to be carried out at the subject property are considered "eligible activities" as defined by Sec 2 of Act 381, because they include Department Specific Activities and preparation of a Brownfield and Act 381 work plan (see Table 1). On the western Parcel A, Department Specific Activities include environmental assessment, excavation, soil removal, and backfill in contaminated areas. These activities are anticipated to begin in 2018, and are expected to take approximately three to four months to complete. Department Specific Activities on the western parcel also include installation of sub slab venting systems on new construction. Installation of the systems will

be coordinated with construction activities, which are estimated to take approximately 24-36 months to complete after environmental cleanup. A date for commencement of Department Specific Activities on the eastern Parcel B cannot be estimated at this time, as it depends on future discussions between the developer, the City, and the current property owner. However, the activities, include soil and waste removal, and installation of a hydraulic barrier, liner & cap, and passive methane venting system on the former landfill area.

Detailed information on eligible activities is summarized below:

2.3.1 Baseline Environmental Assessment Activities

A Phase I ESA was completed for the subject property in January 2017. A Supplemental Subsurface Investigation and BEA are currently being prepared for the acquiring entity. Additional Phase I ESAs and BEAs may be completed for new entities.

2.3.2 NFA Report and Documentation of Due Care Compliance Report

Phase I and Phase II ESAs are in process or have been completed for the subject property. A BEA will be completed for Parcels A and B prior to the development entity's (or entities') acquisition of the subject property. Additional due care investigations are planned for Parcel A and Parcel B.

Parcel A

Remediation on Parcel A at the subject property will be completed in order to obtain an unrestricted residential status. Subsequent to the completion of remedial activities, a No Further Action (NFA) report will be prepared and submitted to MDEQ for review and approval.

The BEA and NFA reporting will be completed in accordance with Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 Public Act (PA) 451, as amended, and Michigan Department of Environmental Quality (MDEQ) Instructions for Preparing and Disclosing Baseline Environmental Assessments and Section 7a Compliance Analyses, effective March 11, 1999. The NFA will describe remedial activities associated with soil and groundwater contamination at the subject property in light of the nature of the proposed development construction activities and occupancy of the developed property. A detailed breakdown of the costs associated with this task is provided later in this section.

Parcel B

On Parcel B, targeted environmental response activities will be conducted on the areas associated with previous dumping and landfilling outside of the currently fenced area. As detailed in Section 2.3.4, these activities will include excavation of landfilled materials and some consolidation of contaminated soils.

The fenced area, where most significant impact is generally located, will be subject to the installation of due care engineering controls. Cleanup activities on "areas of most significant impact" are intended to address the paint waste landfilled onsite; identification of these areas will be through field observation during excavation activities, using visual and olfactory criteria. Subsequent to the completion of remedial activities and installation of due care engineering controls, a Documentation of Due Care Compliance (DDCC) report will be completed. Future use of Parcel B is intended to be restricted to non-residential use, and is planned to be further limited to natural open area and surface parking. Therefore, in consultation with MDEQ, due care requirements for the intended use will be met. The Developer intends that the DDCC will be reviewed and approved by MDEQ, but does not intend to pursue closure for Parcel B.

BROWNFIELD PLAN | NORTHEAST CORNER OF HAMLIN AND ADAMS ROADS, ROCHESTER HILLS, MI REVISION DATE: FEBRUARY 20, 2018

After consultation with EPA and MDEQ, encapsulation of landfilled materials, which includes areas where PCB contamination was previously detected on Parcel B, will be conducted pursuant to Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 Public Act (PA) 451, as amended (Part 201), rather than the Toxic Substances Control Act of 1976, which EPA administers. Correspondence with EPA outlining the basis for this determination is provided in Attachment D.

The BEA and DDCC reporting will be completed in accordance with Part 201 of the Natural Resources and Environmental Protection Act (NREPA), 1994 Public Act (PA) 451, as amended, and Michigan Department of Environmental Quality (MDEQ) Instructions for Preparing and Disclosing Baseline Environmental Assessments and Section 7a Compliance Analyses, effective March 11, 1999. A detailed breakdown of the costs associated with this task is provided later in this section.

2.3.3 Health and Safety Plan

A site-specific Health and Safety Plan (HASP) will be completed for redevelopment activities at the subject property by each of the subsurface contractors and others that can come into contact with potentially contaminated media during the performance of their work activities. The HASPs will comply with appropriate guidelines including the following:

- Michigan Occupational Safety and Health Act;
- Section 111(c)(6) of CERCLA;
- Occupational Safety and Health Administration requirements 29 CFR 1910 and 1926;
- Standard Operating Safety Guide Manual (revised November 1984) by the Office of Emergency and Remedial Response; and
- Occupation Safety and Health guidance manual for Hazardous Waste Site Activities (NIOSH/OSHA/USCG/EPA, DHHS [NIOSH] Publication No. 85-115, October 1985).

The HASPs will include the following elements:

- Authorized personnel and definition of responsibilities;
- proposed activities;
- personal protective equipment;
- decontamination procedures;
- work zone restrictions and delineations;
- personal protection upgrade/downgrade action limits;
- emergency information and telephone numbers;
- incident documentation procedures; and
- contingency plans.

Oversight will be conducted to ensure due care issues are addressed while eligible activities and construction activities are being completed. The following activities (at a minimum) will be documented:

- The type, location, quantities, etc., of materials removed from the site and disposed at the landfill or other appropriately licensed disposal operation.
- The final disposition and location of any contaminated media that can be managed on-site in accordance with due care requirements.
- Monitoring for unanticipated materials and/or materials previously not identified, including collection of samples for additional waste characterization.

• The type, location, materials and construction of vapor mitigation systems installed at the site to prevent future potential indoor air inhalation exposures.

The Contractor Site Safety Officer will document and enforce HASP issues with workers at the Site, including:

- Verification of on-site worker training and current certifications.
- Conducting site-specific HASP training for workers entering the site.
- Monitoring construction activities to ensure the HASP is being followed, including use of PPE, decontamination of equipment, site security, etc.

A Construction Summary Report (CSR) will be prepared and submitted to the MDEQ-RD at the completion of development activities. The CSR will summarize the due care issues addressed during the construction activities and will include such items as photographic documentation, disposal manifests, fill material load tickets, utility abandonment logs (if any), site plans, etc. to verify that the development construction activities were conducted in accordance with approved plans.

2.3.4 Soil Remediation Activities

AKT Peerless has conducted several investigations that detected numerous VOCs, SVOCs, PBCs and/or metals in soil and groundwater at concentrations that exceed MDEQ's Part 201 RCC. VOCs, SVOCs, PBCs and/or metals detected in soil and/or groundwater at the subject property during past investigations include:

Antimony Arsenic

Acenaphthene beta-Hexachlorocyclohexane

Benzene Benzo(a)anthracene

Benzo(a)pyrene Benzo(b)fluoranthene

Bis(2-ethylhexyl)phthalate n-Butylbenzene

Sec-Butylbenzene Cadmium

Carbon tetrachloride Carbazole

Chromium (total) Dibenzofuran

Di-n-butyl phthalate Ethylbenzene

Fluorene Fluoranthene

Isopropyl benzene Lead

Mercury 2-Methylnaphthalene

Naphthalene Nickel

Phenanthrene Polychlorinated biphenyls

n-Propylbenzene Selenium

Silver Toluene

Trichloroethylene 1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene 4-Methyl-2-pentanone (MIBK)

Vinyl Chloride Xylenes

Zinc

The Developer intends to construct a residential development on Parcel A and intends to remediate Parcel A to the extent that MDEQ may approve a No Further Action (NFA) request. Therefore, the Developer plans to remove the source areas of contamination on Parcel A. Based on the analytical results from previous subsurface investigations, six source areas have been identified on Parcel A (additional areas of contamination related to former landfilling are on Parcel B). Site specific background calculations will be performed for arsenic and selenium as part of the NFA.

The Developer intends to perform environmental cleanup activities on Parcel B and install due care engineering controls, such that Parcel B can be used as open natural area and surface parking to support recreational activities on municipal property east of Parcel B. These cleanup activities include soil removal in Source Area E, as listed in the following table.

Procedures for relocation of contaminated soils will be specified in an Environmental Construction Management Plan for certain minimal amounts of relocation within Parcel B, if necessary. In general, relocation of contaminated soils is not anticipated. Moreover, no contaminated soils are to be relocated between Parcel A and Parcel B, and none will be relocated within Parcel A.

The table below provides approximate volumes of contaminated soil/fill to be removed from each of the source areas and the former landfill area on the subject property.

Parcel Where Source	Source Area	Approximate Yd ³
Area Is Located		
Parcel A	Source Area A	1,630
Parcel A	Source Area B	3,556
Parcel A	Source Area C-1	7,741
Parcel A	Source Area C-2	23,333
Parcel A	Source Area D	6,667
Parcel B	Source Area E	23,185
Parcel A	Source Area F	741

Due to the concentrations of soil contaminants in these source areas and due to the fact that the Developer wishes to pursue a NFA designation, impacted soil and fill materials must be removed from Parcel A. The soil/fill will be removed and disposed at a Type II landfill. The costs included in the eligible activities include excavation, transportation, disposal, verification sampling, backfill, oversight and reporting, and project management. Due to compaction requirements, an additional 40,000 tons of

backfill is anticipated to be necessary to return excavated areas to grade. Remediation activities in Source Areas A-D and F are planned to begin in 2018, and are anticipated to take approximately three to four months to complete. The remedial and due care work in Source Area E and Parcel B is expected to be conducted after completion of remedial work on Parcel A, funded by the tax increment revenue stream that will then be available.

It should be noted that previous subsurface investigations encountered discontinuous, perched groundwater pockets with limited contamination. Groundwater contamination appeared to have been due to leaching from surrounding contaminated soils. It is anticipated that these pockets of impacted groundwater will be removed and properly disposed of during soil remediation activities on Parcel A.

Please refer to Table 1, Eligible Activity Cost Detail, for specific line item costs for the due care activities, and to Figure 3 for the locations of the source areas. These costs include allowances for environmental project management, field time, and contracted services.

2.3.5 Hot Spot Removal

Previous subsurface investigations identified six hot spots of metals contamination, likely associated with shallow fill materials, much smaller than the source areas identified in section 3.1.1.3 above. These hot spots are located in the central and southeastern portions of the western Parcel A. In order to remediate these areas, approximately 1,500 yd³ of soil is anticipated to be excavated and disposed at a Type II landfill. The costs included in the eligible activities include excavation, transportation, disposal, verification sampling, backfill, oversight and reporting, and project management. These activities are anticipated to be completed at the same time as the soil removal described in the previous section. The costs in this section include allowances for environmental project management, field time, and contracted services.

2.3.6 Sub-Slab Venting System (New Construction)

Methane has not been found extensively across the property; however, the subject property is at risk for migration of methane gas from the landfill located across Hamlin Road to the south. This would be a concern for financing. As a result, the Developer intends to install passive sub-slab venting systems in all new buildings as a presumptive remedy to prevent indoor air exposure. AKT Peerless will engage with MDEQ representatives to obtain approval of the draft venting system construction plan. Construction of the systems will occur at the same time as construction of the residential units, which is anticipated to occur over approximately 3 years, beginning in 2018. This cost includes assessment, design, construction, testing, reporting, and project management for the systems.

An Operation and Maintenance (O&M) Plan for the sub-slab venting systems will be prepared by an environmental consultant.

2.3.7 Engineering Controls – Former Landfill Area

Complete removal of the area of the highest contamination, the former landfill area on the eastern parcel, is neither geotechnically sound or financially feasible. A hydraulic barrier system will be installed around the perimeter of the former landfill area (approximately 1,400 linear feet). Following the removal of contaminated soils from Area E, the initial portion of the barrier wall will be constructed adjacent to the western side of the landfill area (Refer to Figure 3, where this barrier wall is denoted as the "Clay Backfill Wall"). The final design of the barrier system is not complete, but will likely consist of a (minimum) 2-foot thick clay liner "slurry wall" around the remainder of the landfill area. The clay will be compacted to 95% based on the optimum moisture content. Shoring or trench boxes will be used to

BROWNFIELD PLAN | NORTHEAST CORNER OF HAMLIN AND ADAMS ROADS, ROCHESTER HILLS, MI REVISION DATE: FEBRUARY 20, 2018

ensure slope stability during the installation and compaction of the clay walls. The purpose of the Clay Backfill Wall and slurry wall is to prevent infiltration of groundwater into the former landfill area. The bottom of the Clay Backfill Wall and slurry wall will tie into native clay, and the top of these walls will tie into the clay cap, thus completely encapsulating the landfill area. Further, these control measures will act to prevent leachate formation.

As noted above, the former landfill will be covered with 2 feet of compacted clay and a flexible membrane liner and cap to prevent exacerbation of existing contamination. The clay cap will tie into the slurry wall and Clay Backfill Wall. In addition, if deemed necessary by MDEQ, a passive methane venting system will be designed and installed either (a) west of the former landfill area (approximately 1,400 linear feet), or (b) within the landfill area, to manage landfill gases on-site.

The environmental consultant will prepare and implement an O&M Plan for the engineering controls installed in the former landfill area. The O&M Plan is anticipated to include a recommendation for quarterly long term inspection/methane monitoring. The cost estimate for implementation of an O&M plan is \$30,000 per year.

This cost includes design, installation, reporting, and project management for the systems.

2.3.8 Passive Methane Venting System

The south adjacent property is a former landfill. As a presumptive remedy to preemptively protect against the migration of contamination from methane gases, a passive methane venting system will be installed on the subject property along Hamlin Road, if deemed necessary by MDEQ. An O&M Plan for the venting system will be prepared.

This cost includes design, installation, reporting, and project management for the system. In addition, the environmental consultant will prepare and implement an O&M Plan for the engineering controls installed along Hamlin Road. The O&M Plan is anticipated to include a recommendation for quarterly long term inspection/methane monitoring.

2.3.9 Site Control & Erosion Control

In order to be protective of workers and residents, the excavation areas will be fenced or barricaded to minimize potential for unauthorized access to contaminated soil. These costs include the silt fencing for the north and east in order to mitigate erosion concerns; dust monitoring during environmental mitigation work in order to address further concerns of the neighbors to the north; a Soil Erosion and Sedimentation Control Plan; and a Fugitive Dust Emission Control and Contingency Plan. Additionally, a gravel mat will be constructed along the truck route leaving the property to minimize tracking of dirt and potentially impacted soil from the property.

During soil excavation and removal activities the truck routes will be as follows:

Site Arrival

- The trucks will initially use the entrance ramps on M-59 at the Adams Road interchange.
- The trucks will proceed north on Adams Road to Hamlin Road.
- Turn right (east) on Hamlin Road to enter the site. All trucks will be staged on site while waiting to be loaded or completion of shipping papers.

Site Departure

• The trucks leave the site onto Hamlin Road and proceed west toward Adams.

- The trucks will turn left (south) onto Adams Road and proceed to the M-59 interchange.
- The trucks will access M-59 from Adams Road and procedure to their destination.

See Figure 4 for a proposed truck route map.

2.3.10 Dewatering

The potential for water in excavations exists, particularly in Area E. In the event that groundwater is encountered in sufficient quantities to require dewatering, the water will be containerized in frac tanks. Once containerized, the water will be sampled to determine whether or not disposal is necessary or if the water can be discharged to the POTW under a permit. In the event that groundwater is encountered in a quantity that is too large to containerize, alternate methods for direct dewatering and disposal will be evaluated.

A summary of the eligible activities and the estimated cost of each eligible activity intended to be paid for with Tax Increment Revenues from the subject property are shown in the table below.

Estimated Cost of Reimbursable Eligible Activities

	Description of Eligible Activity	ا	Estimated Cost*
1.	Department Specific Activities	\$	8,328,415
Sı	btotal Environmental & Non-Environmental Eligible Activities	\$	8,328,415
2.	15% Contingency on Eligible Activities**	\$	1,246,172
3.	Brownfield Plan & Act 381 WP Preparation Activities	\$	45,000
To	otal Eligible Activities Cost with 15% Contingency	\$	9,619,587
4.	BRA Administration Fee	\$	240,000
5.	State Revolving Fund	\$	1,287,667
6.	Local Brownfield Revolving Fund (LBRF)***	\$	2,963,575
7.	Interest (calculated at 5%, simple)****	\$	4,581,988
To	otal Eligible Costs for Reimbursement	\$	18,692,816

^{*}Estimated costs are subject to approval by MDEQ, as required. Any costs not approved by the MDEQ, as required, may become local only costs paid out of captured tax increment revenues from locally levied millages (to the extent available). Reimbursement of these activity costs would be limited to the local proportional share of local captured taxes.

A detailed breakout of the eligible activities and the estimated cost of each eligible activity intended to be paid for with Tax Increment Revenues from the subject property is shown in Attachment C, Table 1. It is currently anticipated that redevelopment will begin in 2018 and be completed in 2021.

The Developer desires to be reimbursed for the costs of eligible activities. Tax increment revenue generated by the subject property will be captured by the Authority and used to reimburse the cost of the eligible activities completed on the subject property after approval of this Brownfield Plan and an associated reimbursement agreement.

^{**}The contingency is applied to the Subtotal, excepting those particular activities which have already been performed.

^{***}LBRF deposits will be made in accordance with Act 381 and with RHBRA policy.

^{****}Interest is calculated annually at 5% simple interest on unreimbursed eligible activities.

The costs listed in the table above are estimated costs and may increase or decrease depending on the nature and extent of environmental contamination and other unknown conditions encountered on the subject property. Costs may be moved between categories of eligible activities, provided that the total amount of incurred eligible activity costs requested for reimbursement does not exceed the total cap approved by the municipality. The actual cost of those eligible activities encompassed by this Brownfield Plan that will qualify for reimbursement from tax increment revenues of the Authority from the subject property shall be governed by the terms of a Reimbursement Agreement with the Authority (the "Reimbursement Agreement"). No costs of eligible activities will be qualified for reimbursement except to the extent permitted in accordance with the terms and conditions of the Reimbursement Agreement and/or the Development Agreement.

In accordance with this Brownfield Plan, and the associated Reimbursement Agreement, the amount advanced by the Developer will be repaid by the Authority solely from the tax increment revenues realized from the Eligible Property. It should be noted that the environmental costs for the project of \$9,619,587 represent an approximately 17% increase in the development costs over a comparable "greenfield" site. This increase far exceeds any reasonable construction contingency for the project. Moreover, these costs do not add any benefit to the lenders' loan to value considerations, and therefore are anticipated to be funded through equity, reducing investors' returns on equity. In addition, the sub slab venting systems planned for the western parcel to address potential migration from offsite, and the capping and containment to remedy former illegal dumping on the eastern parcel are costs to address environmental issues that were not caused by the developers, and are outside the area of the developers' residential construction. Moreover, the eligible activities on the eastern parcel provide a significant, direct benefit to the City of Rochester Hills in its efforts to develop quality greenspace east of the subject property, as well as to the residents currently living immediately to the north. In general, the subject property is located within a larger area of former landfills that have resisted redevelopment for decades. This project represents a turning point and will be a model for other projects, providing a vital pathway and boon for the area.

Per its brownfield guidance, the City of Rochester Hills permits interest in extreme circumstances where there is a gap in financing. Due to the extreme circumstances associated with the cleanup of the former illegal landfill – including remediation activities on the adjacent largely vacant parcel separate from the new residential development, the projected amount to be reimbursed includes interest at the rate set at 5% simple interest, as permitted by the Act. The interest reimbursement is estimated at \$4,581,988. This amount is still insufficient to fully cover the financing gap created by the \$9,619,587 in projected environmental costs (since the lender for the project will not loan to support those costs), but it is necessary to make the project financeable. Since the senior lender will not finance the environmental cost, those costs must be covered with equity. Without interest reimbursement, the project cannot attract enough equity to complete those activities.

Payments will be made to the full extent incremental property tax revenues are or become available for such purpose under the Act. However, if the actual cost of eligible activities turns out to be lower than the above estimates, interest reimbursement may be lower, subject to the 5% simple interest calculation.

Tax increment revenues will used each year to make the specified payment toward administrative expenses described in the table above. The amount of school tax revenues, which will be used to reimburse the costs of implementing eligible activities at this site, will be limited to the school tax portion of the cost of: (1) eligible activities approved by the MDEQ (as required); (2) assessment activities and brownfield and work plan preparation; and (3) the interest calculated as described above.

If the use of school tax revenues to reimburse specific eligible activities is not approved by the MDEQ, these specific activities will be reimbursed with local-only TIR (to the extent available). Reimbursement of these activity costs would be limited to the local proportional share of local captured taxes.

2.4 Estimate of Captured Taxable Value and Tax Increment Revenues (Section 13(2)(c)); Impact of Tax Increment Financing On Taxing Jurisdictions (Section 13(2)(g), Section 2(ee))

This Brownfield Plan anticipates the capture of tax increment revenues to reimburse the Developer for the costs of eligible activities under this Brownfield Plan in accordance with the Reimbursement Agreement. A table of estimated tax increment revenues to be captured is attached to this Brownfield Plan as Attachment C, Table 2. Tax increment revenue capture is expected to begin in 2019.

All reimbursement will be in accordance with the Reimbursement Agreement and the Development Agreement.

The total estimated cost of the eligible activities and other costs (including administrative fees, contingency, interest, and LBRF deposits) to be reimbursed through the capture of tax increment revenue is projected to be \$18,692,816. Of this total, \$9,619,587 are eligible activities including contingency. This represents a 17% increase to the total development costs, which – excluding land and the eligible activities – exceed \$37 million.

The estimated effective initial taxable value for this Brownfield Plan is \$37,440 and is based on land and real property tax only. No personal property is currently on the subject property. Significant taxable personal property is not anticipated in the new development; however, to the extent that new taxable personal property generates tax increment revenue, the reimbursement period may be shortened. The initial taxable value of \$37,440 is set in 2017, the year in which the eligible property was included in this plan. Redevelopment of the subject property is expected to initially generate substantial incremental taxable value in 2020 with the first significant increase in taxable value of approximately \$4,473,792 beginning in 2020. Only tax revenue from the incremental increase will go toward reimbursement; there will be no loss to taxing jurisdictions during the life of the Plan.

It is estimated that the Authority will capture the 2019 through 2042 tax increment revenues to reimburse the cost of the eligible activities, reimburse interest, State Brownfield Redevelopment Fund, LBRF and pay Authority administrative fees. An estimated schedule of tax increment revenue reimbursement is provided as Attachment C, Table 3.

The captured incremental taxable value and associated tax increment revenue will be based on the actual increased taxable value from all taxable improvements on the subject property and the actual millage rates levied by the various taxing jurisdictions during each year of the plan, as shown in Attachment C, Tables 2 and 3. The actual tax increment captured will be based on taxable value set through the property assessment process by the local unit of government and equalized by the County and the millage rates set each year by the taxing jurisdictions.

2.5 Impact on Taxing Jurisdictions (Section 13(2)(g)

Based on the current expectations, the Rochester Hills School District is projected to receive some \$2,537,713 toward bond repayment over the anticipated life of the Plan; the Zoo Authority, Art Institute, Ch 20 Drain Debt reduction fund and OPC Building debt retirement fund will all see significant payments as reflected on Table 2. Further, the Plan will provide some \$240,000 in fees to the Authority. Following completion of this Plan, the subject property is anticipated to provide over \$460,000 per year thereafter

in local taxes and over \$560,000 per year in school and education taxes. Also, the project will employ workers and house tenants that will help stimulate the regional economy, providing further tax benefits.

The following table on the next page presents an estimation of the tax revenues generated on the subject property during the life of the Plan. Revenues are shown by taxing jurisdiction.

Impact to Taxing Jurisdictions

Millage Developer PRA Admin State Revolving Taying												
	Millage		Developer		RA Admin	Sta	te Revolving				Taxing	
School Capture	Rate		imbursement	Reii	mbursement		Fund		LBRF		ırisdiction	
State Education Tax (SET)	6.0000	\$	1,954,856			\$	1,287,667	\$	294,446	\$	5,391	
School Operating Tax	18.0000	\$	5,864,569					\$	883,397	\$	16,174	
<u>Local Capture</u>												
OAK COUNTY PARKS	0.2392	\$	77,934	\$	2,931			\$	21,806	\$	215	
HURON-CLIN PARK	0.2146	\$	69,919	\$	2,629			\$	19,563	\$	193	
GENERAL FUND	2.1136	\$	688,631	\$	25,896			\$	192,678	\$	1,899	
LOCAL STREET I	0.3507	\$	114,261	\$	4,297			\$	31,970	\$	315	
LOCAL STREET II	0.4803	\$	156,486	\$	5,885			\$	43,785	\$	432	
LOCAL STREET III	0.2939	\$	95 , 755	\$	3,601			\$	26,792	\$	264	
FIRE FUND	2.7000	\$	879,685	\$	33,080			\$	246,134	\$	2,426	
SPECIAL POLICE I	1.1954	\$	389,473	\$	14,646			\$	108,974	\$	1,074	
SPECIAL POLICE II	1.5633	\$	509,338	\$	19,154			\$	142,512	\$	1,405	
PATHWAY	0.1837	\$	59,851	\$	2,251			\$	16,746	\$	165	
RARA OPERATING	0.1928	\$	62,816	\$	2,362			\$	17,576	\$	173	
OPC TRANSPORTION	0.0990	\$	32,255	\$	1,213			\$	9,025	\$	89	
OPC OPERATING	0.2377	\$	77,445	\$	2,912			\$	21,669	\$	214	
LIBRARY OPERATING	0.7739	\$	252,144	\$	9,482			\$	70,549	\$	695	
OAK COUNTY OPERATING	4.0400	\$	1,316,270	\$	49,498			\$	368,290	\$	3,630	
OAK INT SD-ALLOC	0.1985	\$	64,673	\$	2,432			\$	18,095	\$	178	
OAK INT SD-VTD	3.1413	\$	1,023,465	\$	38,487			\$	286,364	\$	2,823	
OAK COMM COLLEGE	1.5707	\$	511,749	\$	19,244			\$	143,186	\$	1,411	
TOTALS		\$	14,201,575	\$	240,000	\$	1,287,667	\$	2,963,575	\$	39,167	
Total Non-Capturable Taxes		1								ı		
In addition, taxes levied by the follow	ing millage	es wi	ll not be captu	red u	nder the Brov	vnfie	ld Plan,					
but instead will flow through to the p	roper tax ι	ınits	•									
ZOO AUTHORITY	0.0990	\$	42,582			•						
ART INSTITUTE	0.1981	\$	85,207									
CH 20 DRAIN DEBT	0.0417	\$	17,936									
OPC BUILDING DEBT	0.2345	\$	100,863									
ROCH SCH DEBT	5.9000	\$	2,537,713									

2.6 Plan of Financing (Section 13(2)(d)); Maximum Amount of Indebtedness (Section 13(2)(e))

Eligible activities are to be financed by the Developer. No bonds will be issued nor will other governmental funds be utilized. The Authority will reimburse the Developer for the cost of approved eligible activities, but only from tax increment revenues generated from the subject property as available, and subject to the Reimbursement Agreement.

All reimbursements authorized under this Brownfield Plan shall be governed by the Reimbursement Agreement. The Authority shall not incur any note or bonded indebtedness to finance the purposes of this Brownfield Plan. The inclusion of eligible activities and estimates of costs to be reimbursed in this Brownfield Plan is intended to: (1) authorize the Authority to fund such reimbursements; and (2) does not obligate the Authority to fund any reimbursement or to enter into the Reimbursement Agreement providing for the reimbursement of any costs for which tax increment revenues may be captured under this Brownfield Plan, or which are permitted to be reimbursed under this Brownfield Plan. The amount and source of any tax increment revenues that will be used for purposes authorized by this Brownfield Plan, and the terms and conditions for such use and upon any reimbursement of the expenses permitted by the Brownfield Plan, will be provided solely under the Reimbursement Agreement contemplated by this Brownfield Plan.

2.7 Duration of Brownfield Plan (Section 13(2)(f))

Current tax capture projections indicate the tax increment capture will continue for 24 years. In the event that the City of Rochester Hills does not have a local brownfield revolving fund, the tax increment capture is expected to last for only 21 years. In no event shall the duration of the Brownfield Plan exceed 35 years following the date of the resolution approving the Brownfield Plan, nor shall the duration of the tax capture exceed the lesser of the period authorized under subsection (4) and (5) of Section 13 of Act 381 or 30 years. Further, in no event shall the beginning date of the capture of tax increment revenues be later than five years after the date of the resolution approving the Brownfield Plan.

2.8 Effective Date of Inclusion in Brownfield Plan

The subject property will become a part of this Brownfield Plan on the date this Brownfield Plan is approved by the City of Rochester Hills. The date of tax capture is anticipated to commence the first year that tax increment revenue becomes available— but in no case shall the beginning date of tax capture shall exceed five years beyond the date of the governing body resolution approving the Brownfield Plan.

2.9 Displacement/Relocation of Individuals on Eligible Property (Section 13(2)(i-l))

There are no persons or businesses residing on the Eligible Property, and no occupied residences will be acquired or cleared; therefore, there will be no displacement or relocation of persons or businesses under this Brownfield Plan.

2.10 Local Brownfield Revolving Fund ("LBRF") (Section 8, Section 13(5))

The Authority has established a Local Brownfield Revolving Fund (LBRF). The Authority will capture incremental local and state school taxes to fund the LBRF, to the extent allowed by law. The rate and schedule of incremental tax capture for the LBRF will be determined on a case-by-case basis. Considerations may include, but not be limited to the following: total capture duration, total annual capture, project economic factors, level of existing LBRF funding, projected need for LBRF funds, and amount of school tax capture available in accordance with Act 381.

BROWNFIELD PLAN | NORTHEAST CORNER OF HAMLIN AND ADAMS ROADS, ROCHESTER HILLS, MI REVISION DATE: FEBRUARY 20, 2018

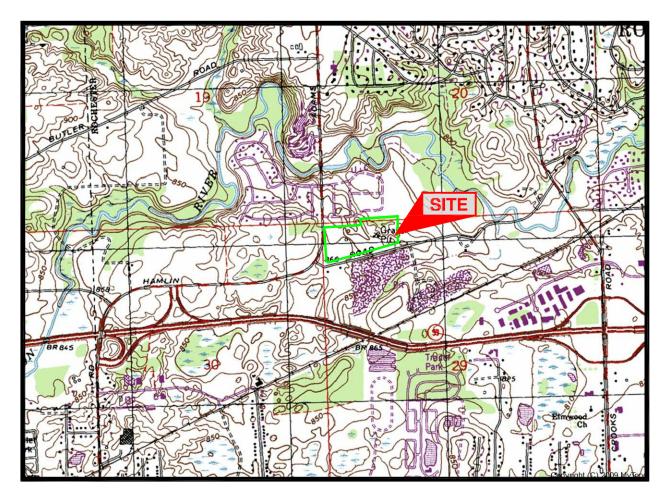
The amount of tax increment revenue authorized for capture and deposit in the LBRF is estimated at \$2,963,575.

2.11 Other Information

The tax capture breakdown of tax increment revenues anticipated to become available for use in this Brownfield Plan is summarized below.

There are 43.6335 non-homestead mills available for capture, with school millage equaling 24.0000 mills (55%) and local millage equaling 19.6335 mills (45%). None of the project will include homestead residential property, with those properties including the State Education Tax and local ISD taxes. The requested tax capture for MDEQ eligible activities breaks down as follows:

Tax Capture


State to Local Tax Capture	Eligible Activities, Interest, Contingency
MDEQ School tax capture (55%)	\$7,819,425
MDEQ Local tax capture (45%)	\$6,382,150
Local-Only tax capture	\$0
Total	\$14,201,575

Attachment A Site Maps

ROCHESTER QUADRANGLE

MICHIGAN - OAKLAND COUNTY
7.5 MINUTE SERIES (TOPOGRAPHIC)

T.3 N.-R.11 E.

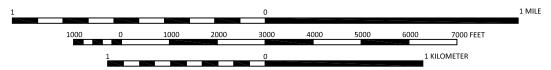
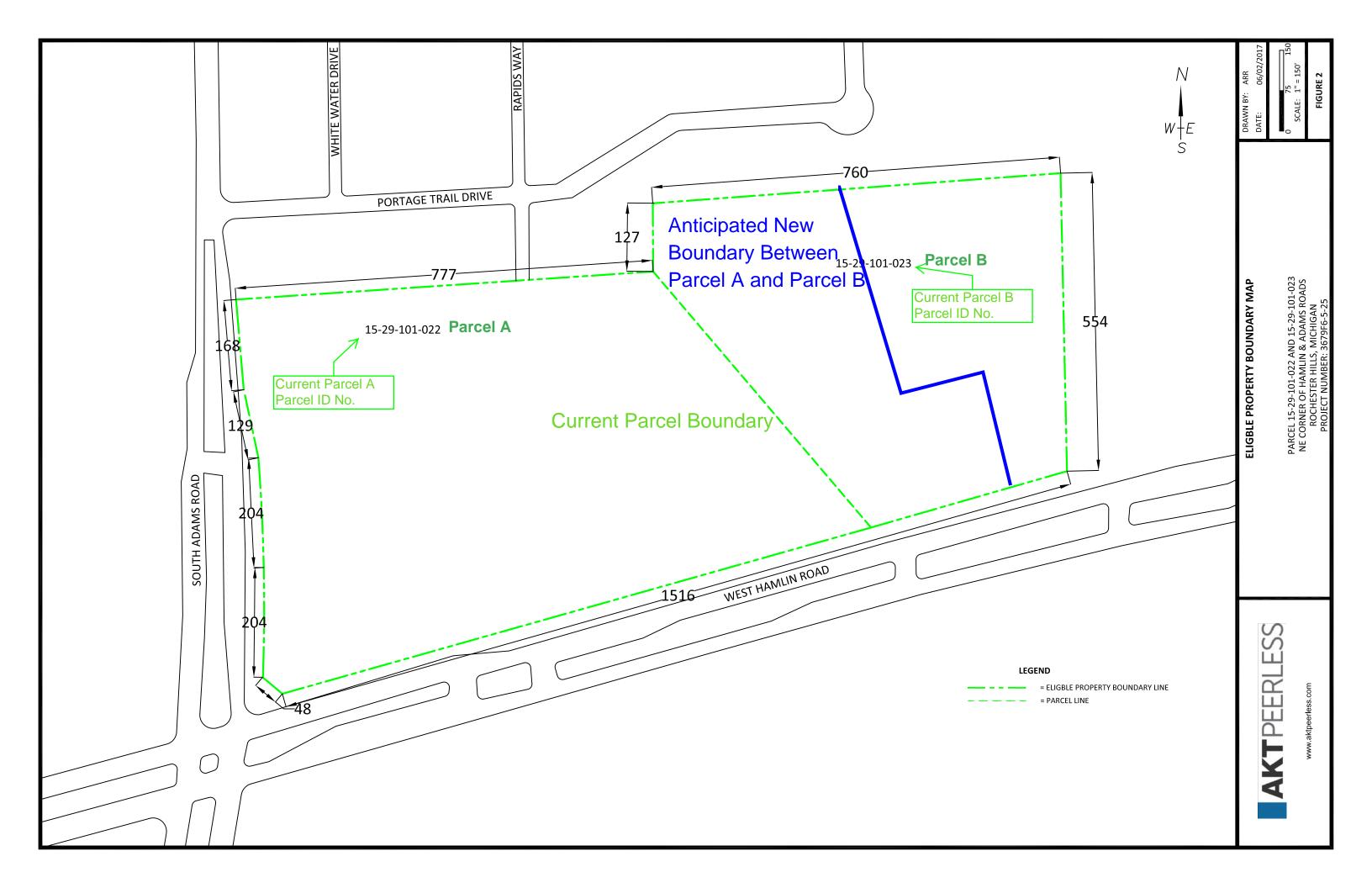
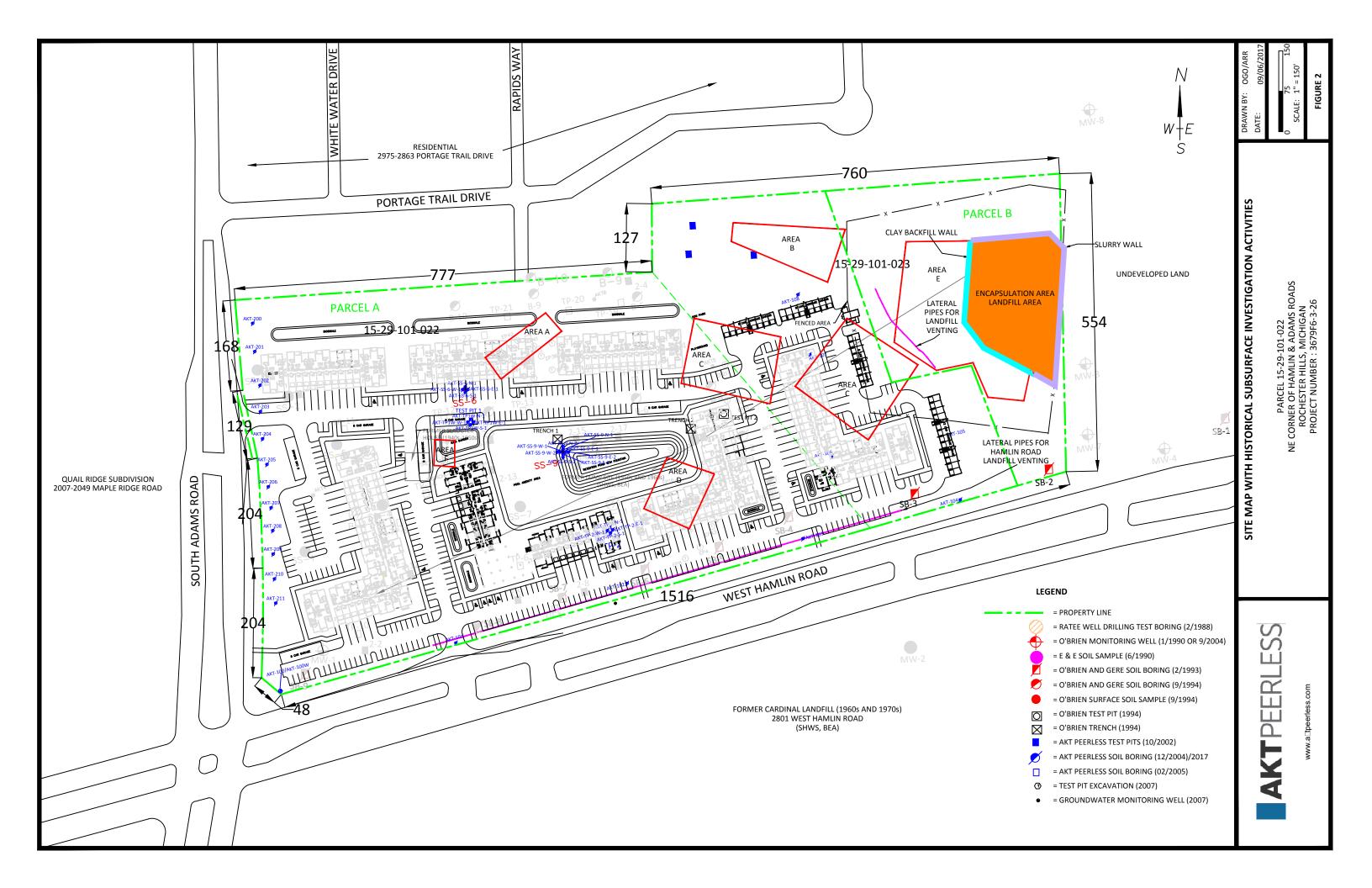


IMAGE TAKEN FROM 1997 U.S.G.S. TOPOGRAPHIC MAP



www.aktpeerless.com


SCALED PROPERTY LOCATION MAP

PARCEL 15-29-101-022 AND 15-29-101-023 NE CORNER OF HAMLIN & ADAMS ROADS ROCHESTER HILLS, MICHIGAN PROJECT NUMBER: 3679F6-5-25 DRAWN BY: ARR
DATE: 06/02/2017

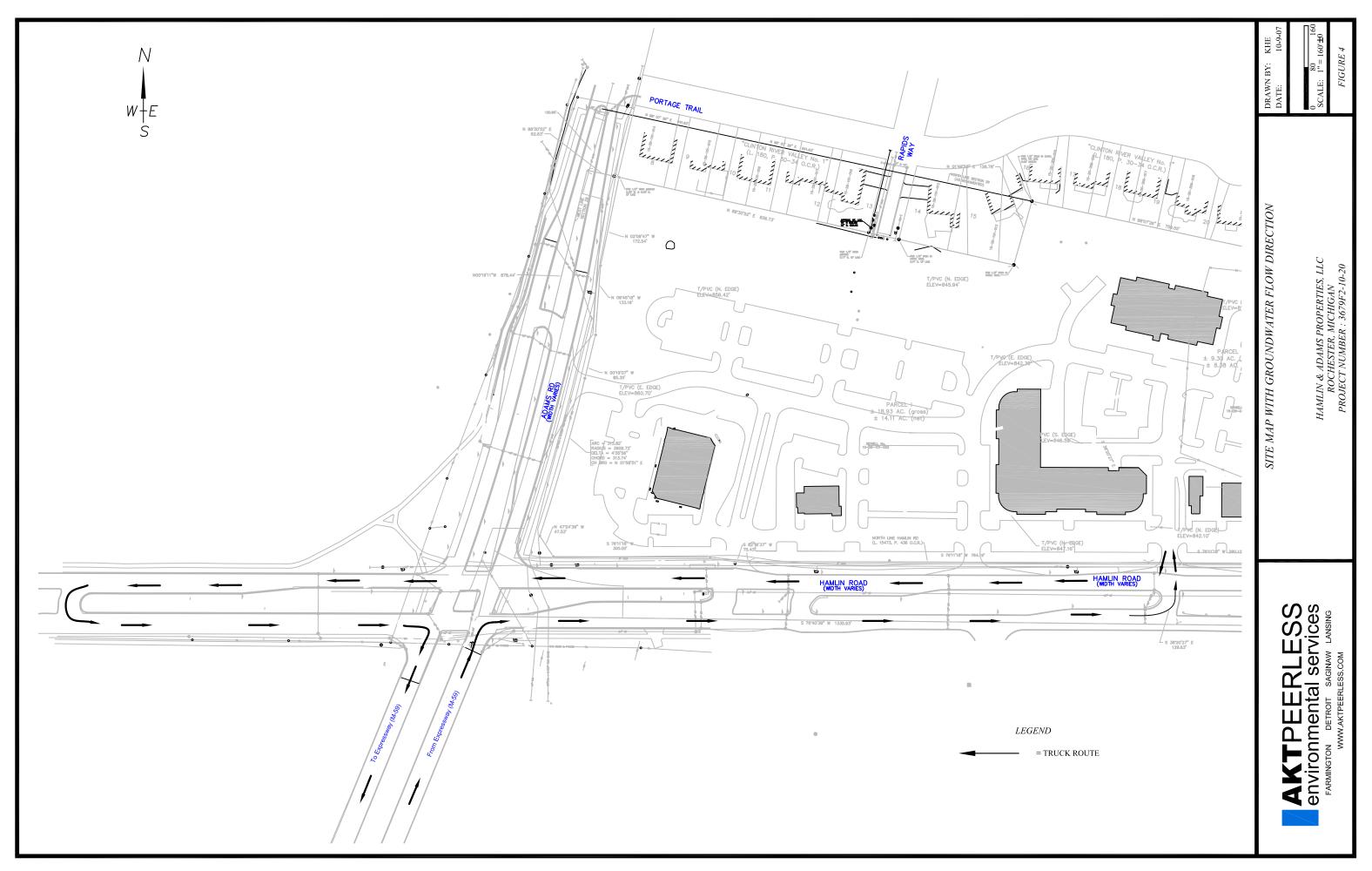

FIGURE 1

Figure 3. Map Showing Proposed New Parcel Boundaries

Figure 4. Proposed Truck Route Map

Attachment B
Legal Description(s)

Legal Descriptions:

Parcel ID: 70-15-29-101-022

Legal Information: T3N, R11E, SEC 29 PART OF W 1/2 OF NW 1/4 BEG AT PT DISTS 00-33-37 E 120.85 FT FROM NW SEC COR, TH N 88-30-46 E 836.53 FT, TH S 38-06-17 E 750.59 FT, TH S 76-30-50 W 1327.14 FT, TH N 00-33-37 W 878.45 FT TO BEG 18.80 A 1-24-00 FR 002

Parcel ID: 70-15-29-101-023

Legal Information: T3N, R11E, SEC 29 PART OF W 1/2 OF NW 1/4 BEG AT PT DIST N 88-07-26 E 841.94 FT FROM NW SEC COR, TH N 88-07-26 E 759 FT, TH S 01-26-07 W 674.52 FT, TH S 76-30-50 W 291 FT, TH N 38-06-17 W 750.59 FT, TH N 01-50-10 E 126.65 FT TO BEG 9.20A 01-24-00 FR 002

Attachment C Tables

Table 1. Eligible Activities

ELIGIBLE ACTIVITIES COST SUMMARY					
					Estimated
					Cost of
				Eli	gible Activity
Department Specific Activities				\$	8,328,415
15	% Continge	ncy on Eligi	ble Activities	\$	1,246,172
Brownfield Plan & Act 381 WP Preparation Activities				\$	45,000
Total Eligible Activiti	ies Cost w	ith 15% C	Contingency	\$	9,619,587
	Interest (d	calculated a	t 5%, simple)	\$	4,581,988
Total Eligible Activities Cost,	, with Cor	ntingency	& Interest	\$	14,201,575
BRA Administration Fee				\$	240,000
State Revolving Fund				\$	1,287,667
Local Brownfield Revolving Fund (LBRF)				\$	2,963,575
Total Elig	gible Cost	s for Rein	bursement	\$	18,692,816

ELIGIBLE ACTIVITIES COST DETAIL					
	# of Units	Unit Type	Cost/ Unit	E	st. Total Cost
Department Specific Activities			Cinc		
Phase I	2	LS	\$ 2,800	\$	5,600
BEA	2	LS	\$ 7,500	\$	15,000
Supplemental Subsurface Investigation	1	LS	\$ 120,000	\$	120,000
Environmental Construction Managemnt Plan	1	LS	\$ 20,000	\$	20,000
Project Management, Adminsitration, and Consulting Support	1	LS	\$ 25,000	\$	25,000
HASP	1	LS	\$ 2,000	\$	2,000
Parcel A - Area A Soil/Waste Removal					
Area A Excavation, Transportation & Disposal	1,630	YD	\$ 45	\$	73,333
Area A Backfill	1,630	YD	\$ 17	\$	27,704
Area A Laboratory Costs and Verification Sampling	1	LS	\$ 6,000	\$	6,000
Area A Environmental Management/Oversight	1	LS	\$ 7,500	\$	7,500
Parcel A - Area B Soil/Waste Removal					
Area B Excavation, Transportation & Disposal	3,556	YD	\$ 45	\$	160,000
Area B Backfill	3,556	YD	\$ 17	\$	60,444
Area B LaboratorY Costs and Verification Sampling	1	LS	\$ 10,000	\$	10,000
Area B Environmental Management/Oversight	1	LS	\$ 14,000	\$	14,000
Parcel A - Area C1 Soil/Waste Removal					
Area C1 Excavation, Transportation & Disposal	7,741	YD	\$ 45	\$	348,333
Area C1 Backfill	7,741	YD	\$ 17	\$	131,593
Area C1 Laboratory Costs and Verification Sampling	1	LS	\$ 11,500	\$	11,500
Area C2 Environmental Management/Oversight	1	LS	\$ 15,000	\$	15,000
Parcel A - Area C2 Soil/Waste Removal					
Area C2 Excavation, Transportation & Disposal	23,333	YD	\$ 45	\$	1,050,000
Area C2 Backfill	23,333	YD	\$ 17	\$	396,667
Area C2 Laboratory Costs and Verification Sampling	1	LS	\$ 15,000	\$	15,000
Area C2 Environmental Management/Oversight	1	LS	\$ 12,000	\$	12,000
Parcel A - Area D Soil/Waste Removal					
Area D Excavation, Transportation & Disposal	6,667	YD	\$ 45	\$	300,000
Area D Backfill	6,667	YD	\$ 17	\$	113,333
Area D Laboratory Costs and Verification Sampling	1	LS	\$ 6,500	\$	6,500
Area D Environmental Management/Oversight	1	LS	\$ 8,000	\$	8,000

Table 1. Eligible Activities

Parcel A - Area F Soil/Waste Removal					
Area F Excavation, Transportation & Disposal	741	YD	\$	45	\$ 33,333
Area F Backfill	741	YD	\$	17	\$ 12,593
Area F Laboratory Costs and Verification Sampling	1	LS	\$	3,500	\$ 3,500
Area F Environmental Management/Oversight	1	LS	\$	5,000	\$ 5,000
Smaller Hot Spot Removal (Southwestern Area)	1	LS	\$	100,000	\$ 100,000
Sub-slab venting system - all new construction	162,000	SF	\$	4	\$ 648,000
Parcel B - Area E Soil/Waste Removal					
Area E Excavation, Transportation & Disposal	23,185	YD	\$	45	\$ 1,043,333
Area E Backfill	23,185	YD	\$	17	\$ 394,148
Area E Laboratory Costs and Verification Sampling	1	LS	\$	15,000	\$ 15,000
Area E Environmental Management/Oversight	1	LS	\$	12,000	\$ 12,000
Parcel B - Removal and Disposal of PCB Impacted Soils	1	LS	\$	232,000	\$ 232,000
O&M Plan - Parcel B	1	LS	\$	900,000	\$ 900,000
Import Clean Fill for Land Balancing	40,000	CY	\$	17	\$ 680,000
Installation Hydraulic Barrier (i.e. slurry wall)	1	LS	\$	150,000	\$ 150,000
Installation of Liner and Cap over former landfill	1	LS	\$	120,000	\$ 120,000
Installation of Passive Methane Venting System (former "landfill" area)	1	LS	\$	190,000	\$ 190,000
Operation and Maintenance Plan - Subfloor Methane Mitigation Systems, S	1	LS	\$	255,000	\$ 255,000
Passive Methane Venting System along Hamlin Road	1	LS	\$	260,000	\$ 260,000
O&M Plan - Passive Methane Venting System along Hamlin Road	1	LS	\$	150,000	\$ 150,000
Temporary Site Control & Erosion Control	1	LS	\$	50,000	\$ 50,000
Dewatering	1	LS	\$	75,000	\$ 75,000
Closeout Reporting (East Parcel) & Documentation of Due Care Compliance	1	LS	\$	15,000	\$ 15,000
NFA Due Care Plan	1	LS	\$	30,000	\$ 30,000
			Su	btotal	\$ 8,328,415
Brownfield Plan & Act 381 Work Plan Preparation					
BRA Application Fee and Administration Fee					\$ -
Brownfield Plan	1	LS	\$	10,000	\$ 10,000
Act 381 Work Plan	1	LS	\$	15,000	\$ 15,000
Cost Tracking & Compliance	1	LS	\$	20,000	\$ 20,000
			Su	btotal	\$ 45,000

Table 2. Tax Increment Revenue Estimates

			24			As of Novemi		3, 2017												
	Estimated I	V Increase rate: 1.0		2		2		4				6		7		0		0		10
		Plan Year	1	2		3		4		5		6		7		8		9		10
		Calendar Year	2019	2020	۲	2021	Ļ	2022	Ļ	2023	۲	2024	۲	2025	ç	2026	۲	2027	۲	2028
Past Day TV/200/ of Project Investment)		Taxable Value \$	37,440			37,440	•	37,440	-	37,440	-	37,440	-	37,440		37,440		37,440	•	37,440
Post-Dev TV (30% of Project Investment)		mated New TV \$ TV - Initial TV) \$		\$ 10,526,208 \$ 10,488,768																
	ierence (ivew	-	4,473,732	3 10,466,706	Ą	13,000,000	Ą	13,313,780	Ą	13,030,204	Ą	13,307,333	Ą	10,303,434	Ą	10,040,034	Ą	10,557,020	Ą	17,334,743
School Capture	Millage Rate																			
State Education Tax (SET)	6.0000	Initial \$	225					225		225		225		225		225		225		225
		Incremental \$	26,843	. ,		90,000	_	91,895		93,829		95,804	-	97,821	_	99,880		101,982		104,128
School Operating Tax	18.0000	Initial \$	674					674		674				674		674		674		674
School Total	24 0000	Incremental \$	80,528	\$ 188,798	<u> </u>	270,000	>	275,684	>	281,488	>	287,413	>	293,463	\$	299,640	\$	305,946	\$	312,385
School Total 24.0000																				
<u>Local Capture</u>	Millage Rate	2																		
OAK COUNTY PARKS		Initial \$	9		\$			9		9		9		9		9		9		9
	0.2392	Incremental \$	1,070			3,588		3,664		3,741		3,819		3,900		3,982		4,066		4,151
HURON-CLIN PARK	0.0446	Initial \$	8					8		8				8		8		8		8
	0.2146	Incremental \$	960 79		_	3,219 79		3,287		3,356		3,427		3,499	_	3,572 79		3,648		3,724
GENERAL FUND	2.1136	Initial \$ Incremental \$	9,456	•		31,704		79 32,371		33,053		33,749		79 34,459		35,184		79 35,925		79 36,681
	2.1130	Initial \$	13					13		13	_			13	_	13		13		13
LOCAL STREET I	0.3507	Incremental \$	1,569			5,261		5,371		5,484		5,600		5,718		5,838		5,961		6,086
	0.3307	Initial \$	18			,	_	18		18		18		18	_	18		18		18
LOCAL STREET II	0.4803	Incremental \$	2,149			7,205		7,356		7,511		7,669		7,831		7,995		8,164		8,335
		Initial \$	11					11		11	_	11		11	_	11		11		11
LOCAL STREET III	0.2939	Incremental \$	1,315	\$ 3,083	\$	4,409	\$	4,501	\$	4,596	\$	4,693	\$	4,792	\$	4,892	\$	4,995	\$	5,101
FIDE FLIND		Initial \$	101	\$ 101	\$	101	\$	101	\$	101	\$	101	\$	101	\$	101	\$	101	\$	101
FIRE FUND	2.7000	Incremental \$	12,079	\$ 28,320	\$	40,500	\$	41,353	\$	42,223	\$	43,112	\$	44,019	\$	44,946	\$	45,892	\$	46,858
SPECIAL POLICE I		Initial \$	45					45		45		45		45		45		45		45
51 261/12 T GERGE T	1.1954	Incremental \$	5,348		_	17,931		18,308	_	18,694		19,087	-	19,489		19,899		20,318		20,746
SPECIAL POLICE II		Initial \$	59					59		59		59		59		59		59		59
	1.5633	Incremental \$	6,994			23,450		23,943		24,447		24,962		25,487		26,024		26,571		27,131
PATHWAY	0.4027	Initial \$	7	•				7		7		7		7		7		7		7
	0.1837	Incremental \$	822		_	2,756	_	2,814	_	2,873	_	2,933	_	2,995	_	3,058		3,122		3,188
RARA OPERATING	0.1928	Initial \$ Incremental \$	863			2,892		7 2,953		3,015	_	3,079		3,143		3,209		7 3,277		7 3,346
	0.1326	Initial \$	4	•	\$			<u> </u>		4	_	4		4		4		4		3,340
OPC TRANSPORTION	0.0990	Incremental \$	443			1,485		1,516		1,548	_	1,581	_	1,614		1,648		1,683		1,718
		Initial \$	9		\$	9	÷	9		9	_	9	-	9	-	9		9		9
OPC OPERATING	0.2377	Incremental \$	1,063	\$ 2,493	\$	3,566	\$	3,641		3,717		3,795	\$	3,875	\$	3,957	\$	4,040	\$	4,125
LIBRARY OPERATING		Initial \$	29	\$ 29	\$	29	\$	29	\$	29	\$	29	\$	29	\$	29	\$	29	\$	29
LIBRARY OPERATING	0.7739	Incremental \$	3,462	\$ 8,117	\$	11,609	\$	11,853	\$	12,102	\$	12,357	\$	12,617	\$	12,883	\$	13,154	\$	13,431
OAK COUNTY OPERATING		Initial \$	151					151		151				151		151		151		151
	4.0400	Incremental \$	18,074			60,600		61,876		63,178		64,508		65,866		67,252		68,668		70,113
OAK INT SD-ALLOC		Initial \$	7	•	\$			7		7				7		7		7		7
	0.1985	Incremental \$	888			2,978		3,040		3,104		3,170	-	3,236		3,304		3,374		3,445
OAK INT SD-VTD	2 4 4 4 2	Initial \$	118					118		118				118		118		118		118
	3.1413	Incremental \$	14,054			47,120 59		48,111 59		49,124 59		50,158		51,214 59		52,292 59		53,393 59		54,516 59
OAK COMM COLLEGE	1.5707	Initial \$ Incremental \$	59 7,027			23,561		24,057		24,563		25,080		25,608		26,147		26,697		27,259
Local Total		micremental 3	7,027	7 10,473	ڔ	23,301	Y	24,037	۲	24,303	ڔ	23,000	٧	23,000	٧	20,147	٧	20,037	Y	21,233
Non-Capturable Millages	Millage Rate				,		_					_ = = :	4		. ـ		_		_	
ZOO AUTHORITY	0.0990	New TV \$	447			1,489	•	1,520	-	1,552		1,584		1,618		1,652		1,686	•	1,722
ART INSTITUTE	0.1981	New TV \$	894			2,979	•	3,041		3,105		3,171	-	3,237		3,305		3,375		3,445
CH 20 DRAIN DEBT	0.0417	New TV \$	188	•		627	•	640		654		667		681		696		710	•	725 4.078
OPC BUILDING DEBT ROCH SCH DEBT	0.2345 5.9000	New TV \$ New TV \$	1,058 26,616			3,526 88,721		3,600 90,584		3,676 92,486		3,753 94,429		3,832 96,412		3,912 98,436		3,995 100,503		4,078 102,614
NOCH JCH DEDI	3.9000	ivew iv \$	20,010	φ 02,105	Ş	00,721	Ą	50,564	ڔ	72,400	ې	54,425	ڔ	50,412	ې	70,430	ې	100,505	ب	102,014

Table 2. Tax Increment Revenue Estimates

	Estimated T	V Increase rate:					,									
		Plan Year	11	12	13	14	15	16	17	18	19	20	21	22	23	24
		Calendar Year	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
	Initial	Taxable Value \$											\$ 37,440			
Post-Dev TV (30% of Project Investme		mated New TV \$,				: '							\$ 22,318,397	. ,	
· ·	· 	TV - Initial TV) \$. , ,			· · · ·		\$ 20,500,649		,	. , ,	\$ 22,280,957		
School Capture	Millage Rat	e														
		Initial \$	225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225	\$ 225 5	\$ 225	\$ 225
State Education Tax (SET)	6.0000	Incremental \$		\$ 108,557	\$ 110,842	\$ 113,174			\$ 120,469				\$ 130,931	\$ 133,686	\$ 136,498	\$ 139,369
School Operating Tax	18.0000	Initial \$	674 318,960	•	•	•		\$ 674	•	•			•			
School To	otal 24.0000	Incremental \$	318,900	\$ 525,672	\$ 332,525	\$ 559,522	\$ 346,666	\$ 353,961	\$ 361,408	\$ 309,012	۶ 3/0,//5	Ş 304,7UZ	3 392,794	\$ 401,057	409,494	\$ 410,107
Local Capture	Millage Rat	e														
OAK COUNTY PARKS		Initial \$	9		•				•					\$ 9 5		
	0.2392	Incremental \$,					•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					•	
HURON-CLIN PARK	0.2446	Initial \$			•					•				\$ 8 5		
	0.2146	Incremental \$	3,803 79									. ,			•	
GENERAL FUND	2.1136	Initial \$ Incremental \$						\$ 41,563								
	2.1130	Initial \$. ,				
LOCAL STREET I	0.3507	Incremental \$								•	•		•			
		Initial \$	18	, ,												
LOCAL STREET II	0.4803	Incremental \$				\$ 9,060	\$ 9,250	\$ 9,445	\$ 9,644	\$ 9,846	\$ 10,054	\$ 10,265	\$ 10,481			
LOCAL CERET III		Initial \$	11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11	\$ 11 5	\$ 11	\$ 11
LOCAL STREET III	0.2939	Incremental \$	5,208	\$ 5,317	\$ 5,429	\$ 5,544	\$ 5,660	\$ 5,779	\$ 5,901	\$ 6,025	\$ 6,152	\$ 6,281	\$ 6,413	\$ 6,548	\$ 6,686	\$ 6,827
FIRE FUND		Initial \$	101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101	\$ 101 5	\$ 101	\$ 101
	2.7000	Incremental \$	47,844					\$ 53,094				. ,			•	
SPECIAL POLICE I	4.4054	Initial \$							•	•			•			
	1.1954	Incremental \$. ,			•	, ,
SPECIAL POLICE II	1.5633	Initial \$	59 27,702			•		\$ 59 \$ 30,741	•	'			•			
	1.5055	Initial \$												\$ 7 9		
PATHWAY	0.1837	Incremental \$		•		•				•	•		•			
	0.1007	Initial \$	· · · · · · · · · · · · · · · · · · ·											\$ 7 5	•	
RARA OPERATING	0.1928	Incremental \$	3,416	\$ 3,488	\$ 3,562	\$ 3,637	\$ 3,713	\$ 3,791	\$ 3,871	\$ 3,953	\$ 4,036	\$ 4,121	\$ 4,207	\$ 4,296	\$ 4,386	\$ 4,478
ODC TRANSPORTION		Initial \$			\$ 4	\$ 4	\$ 4	\$ 4	\$ 4	\$ 4	\$ 4	\$ 4	\$ 4	\$ 4 5		
OPC TRANSPORTION	0.0990	Incremental \$	1,754	\$ 1,791	\$ 1,829	\$ 1,867	\$ 1,907	\$ 1,947	\$ 1,988	\$ 2,030	\$ 2,072	\$ 2,116	\$ 2,160	\$ 2,206	\$ 2,252	\$ 2,300
OPC OPERATING		Initial \$	9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9	\$ 9 5	\$ 9	\$ 9
	0.2377	Incremental \$			<u> </u>								\$ 5,187			
LIBRARY OPERATING		Initial \$	29													
	0.7739	Incremental \$, ,
OAK COUNTY OPERATING	4.0400	Initial \$														
	4.0400	Incremental \$														
OAK INT SD-ALLOC	0.1985	Incremental \$							•	•			•			
OAK INT CD VTD		Initial \$	118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118	\$ 118 5	\$ 118	\$ 118
OAK INT SD-VTD	3.1413	Incremental \$	55,664	\$ 56,835	\$ 58,031	\$ 59,252	\$ 60,499	\$ 61,772	\$ 63,072	\$ 64,399	\$ 65,754	\$ 67,137	\$ 68,549	\$ 69,991	\$ 71,463	\$ 72,967
OAK COMM COLLEGE		Initial \$	59													
	1.5707	Incremental \$	27,833	\$ 28,418	\$ 29,017	\$ 29,627	\$ 30,251	\$ 30,887	\$ 31,537	\$ 32,200	\$ 32,878	\$ 33,569	\$ 34,276	\$ 34,997	\$ 35,733	\$ 36,484
Local To	otal 19.5886															
Non-Capturable Millages	Millage Rat															
ZOO AUTHORITY	0.0990	New TV \$	•									•			•	
ART INSTITUTE	0.1981	New TV \$	•													
CH 20 DRAIN DEBT	0.0417	New TV \$				•				="	•	·=	•	•		•
OPC BUILDING DEBT	0.2345	New TV \$, -												•	
ROCH SCH DEBT	5.9000	New TV \$	104,769	\$ 106,969	\$ 109,215	\$ 111,509	\$ 113,850	\$ 116,241	\$ 118,682	\$ 121,175	\$ 123,719	\$ 126,318	\$ 128,970	\$ 131,679	\$ 134,444	\$ 137,267

Table 3. Reimbursement Allocation Schedule

Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of November 9, 2017

Developer Maximum Reimbursement	Proportionality	Sc	hool & Local Taxes	Local-Only Taxes	Total
State	55.1%	\$	7,819,425		\$ 7,819,425
Local	44.9%	\$	6,382,150	\$ -	\$ 6,382,150
TOTAL		\$	14,201,575	\$ -	\$ 14,201,575
MDEQ	100.0%	\$	14,201,575		
MSF	0.0%	\$	-		

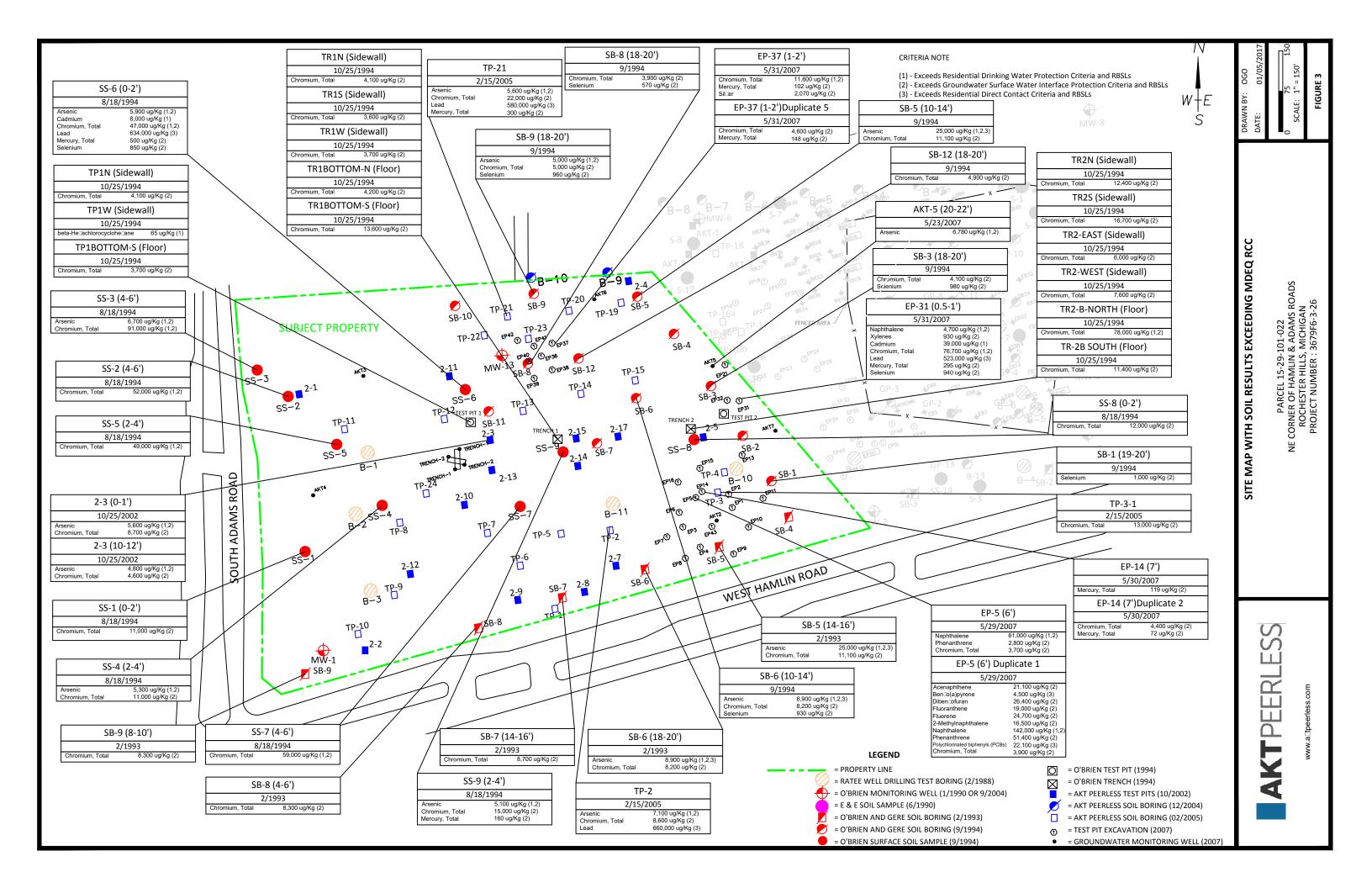
Estimated Total Years of 24 Plan:

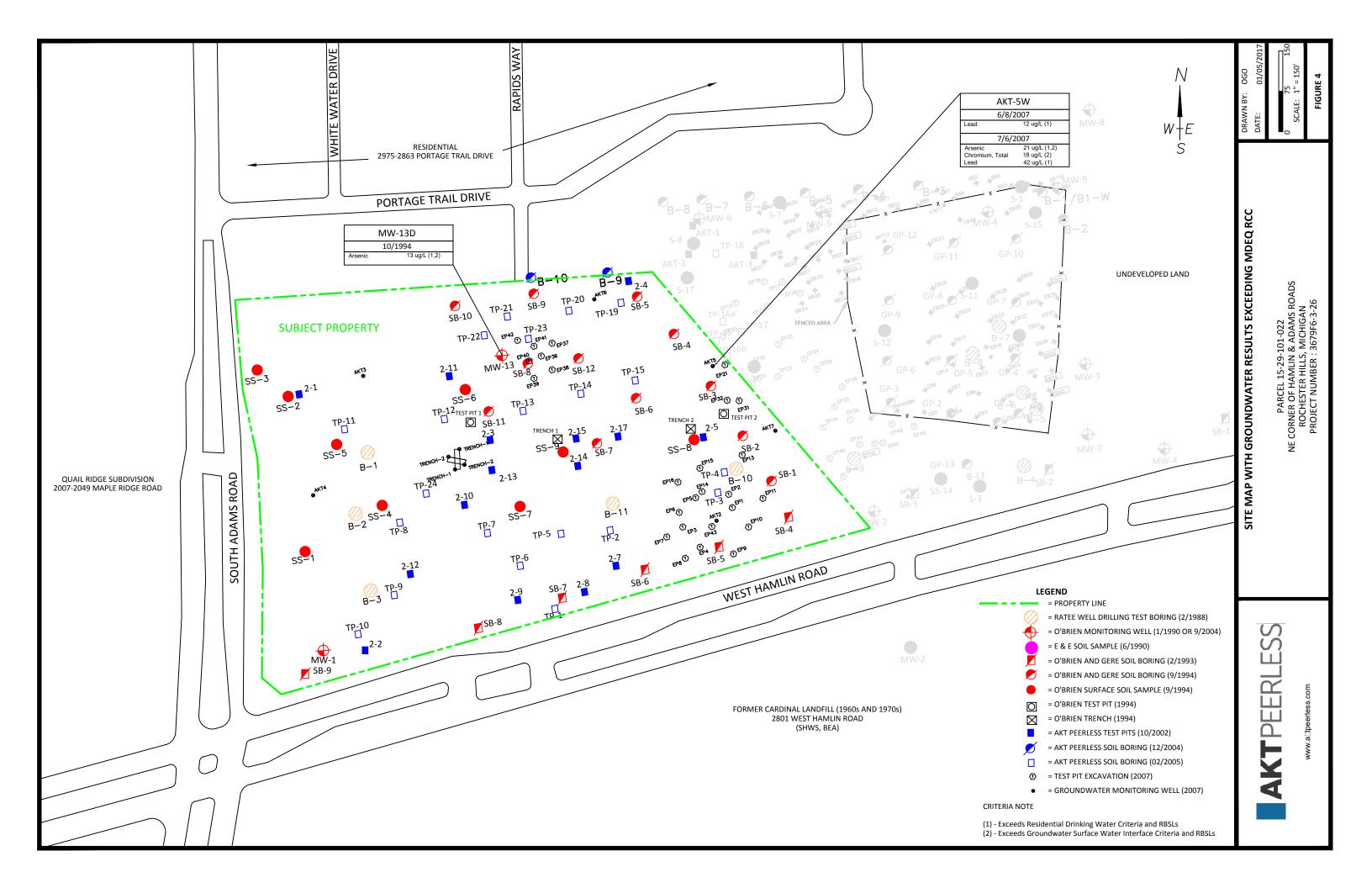
		Plan Year	1		2		3		4		5		6		7		8		9		10
Total State Incremental Revenue			\$ 107,371	\$	251,730		360,000	\$	367,579		375,317	•	383,217	\$	391,284		399,520	•	407,928	\$	416,514
State Brownfield Revolving Fund (3 mills of SE			\$ 13,421		31,466		45,000	•	45,947		46,915		47,902	\$	48,910		49,940		50,991	•	52,064
Local Brownfield Revolving Fund (3% of capture	re)		\$ 3,221	\$	7,552	\$	10,800	\$	11,027	\$	11,260	\$	11,497	\$	11,739	\$	11,986	\$	12,238	\$	12,495
State TIR Available for Reimbursement			\$ 90,729	\$	212,712	\$	304,200	\$	310,604	\$	317,143	\$	323,819	\$	330,635	\$	337,594	\$	344,700	\$	351,954
Total Local Incremental Revenue			\$ 87,635	\$	205,460	\$	293,829	\$	300,015	\$	306,331	\$	312,779	\$	319,363	\$	326,085	\$	332,948	\$	339,955
BRA Administrative Fee			\$ 10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000	\$	10,000
Local Brownfield Revolving Fund (3% of captur	re)		\$ 2,629	\$	6,164	\$	8,815	\$	9,000	\$	9,190	\$	9,383	\$	9,581	\$	9,783	\$	9,988	\$	10,199
Local TIR Available for Reimbursement			\$ 75,006	\$	189,296	\$	275,014	\$	281,014	\$	287,141	\$	293,395	\$	299,782	\$	306,302	\$	312,959	\$	319,756
Total State & Local TIR Available			\$ 165,735	\$	402,009	\$	579,214	\$	591,619	\$	604,283	\$	617,214	\$	630,417	\$	643,896	\$	657,659	\$	671,711
		Beginning																			
DEVELOPER		Balance																			
DEVELOPER Reimbursement Balance	\$	14,201,575	\$ 14,035,840	\$	13,633,831	\$	13,054,617	\$	12,462,998	\$	11,858,715	\$	11,241,501	\$	10,611,084	\$	9,967,188	\$	9,309,529	\$	8,637,818
STATE Reimbursement Balance	\$	7,819,425	\$ 7,728,697	\$	7,515,984	\$	7,211,784	\$	6,901,180	\$	6,584,037	\$	6,260,219	\$	5,929,584	\$	5,591,990	\$	5,247,290	\$	4,895,336
Eligible Activities Reimbursement	\$	5,296,570	\$ 90,729	\$	212,712	\$		\$	310,604	\$	317,143	\$	323,819	\$	330,635	\$	337,594	\$	344,700	\$	351,954
Environmental Eligible Activities	\$	5,296,570	\$ 90,729	\$	212,712	\$	304,200	\$	310,604	\$	317,143	\$	323,819	\$	330,635	\$	337,594	\$	344,700	\$	351,954
Interest Reimbursement	\$	2,522,855	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	_	\$	-
Environmental Portion	\$	2,522,855	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total STATE TIR Reimbursement			\$ 90,729	\$	212,712	\$	304,200	\$	310,604	\$	317,143	\$	323,819	\$	330,635	\$	337,594	\$	344,700	\$	351,954
LOCAL Reimbursement Balance	\$	6,382,150	\$ 6,307,143	\$	6,117,847		-/- /	\$	5,561,818	\$	5,274,678		4,981,282	\$	4,681,500	\$	4,375,198		4,062,239	\$	3,742,483
Eligible Activities Reimbursement	\$	4,323,017	\$ 75,006	\$	189,296		275,014		281,014		287,141		293,395	\$	299,782	\$	306,302	\$	312,959	\$	319,756
Environmental Eligible Activities	\$	4,323,017	\$ 75,006	\$	189,296	\$	275,014	\$	281,014	\$	287,141	\$	293,395	\$	299,782	\$	306,302	\$	312,959	\$	319,756
Interest Reimbursement	\$	2,059,133	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Environmental Portion	\$	2,059,133	\$ -	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Total LOCAL TIR Reimbursement			\$ 75,006	\$	189,296	\$	275,014	\$	281,014	\$	287,141	\$	293,395	\$	299,782	\$	306,302	\$	312,959	\$	319,756
Total Annual Developer Reimbursement			\$ 165,735	\$	402,009	\$	579,214	\$	591,619	\$	604,283	\$	617,214	\$	630,417	\$	643,896	\$	657,659	\$	671,711
LOCAL BROWNFIELD REVOLVING																		_			
FUND																					
	[SRRF Year	0		0		0		0		0		0		0		0		0		0
LBRF Deposits			\$ 5,850	\$	13,716	\$	19,615	\$	20,028	\$	20,449	\$	20,880	\$	21,319	\$	21,768	\$	22,226	\$	22,694
STATE	Ś	7,819,425	\$ 3,221	\$	7,552	Ś	10,800	ς	11,027	\$	11,260	\$	11,497	ς	11,739	Ś	11,986	Ś	12,238	Ś	12,495
317(12	7	,, -	 - /	•	,	т.	,	Y	11,02,	Y	11,200	Y	11,13,	Y	11,733	~	,500	~	12,230	т .	

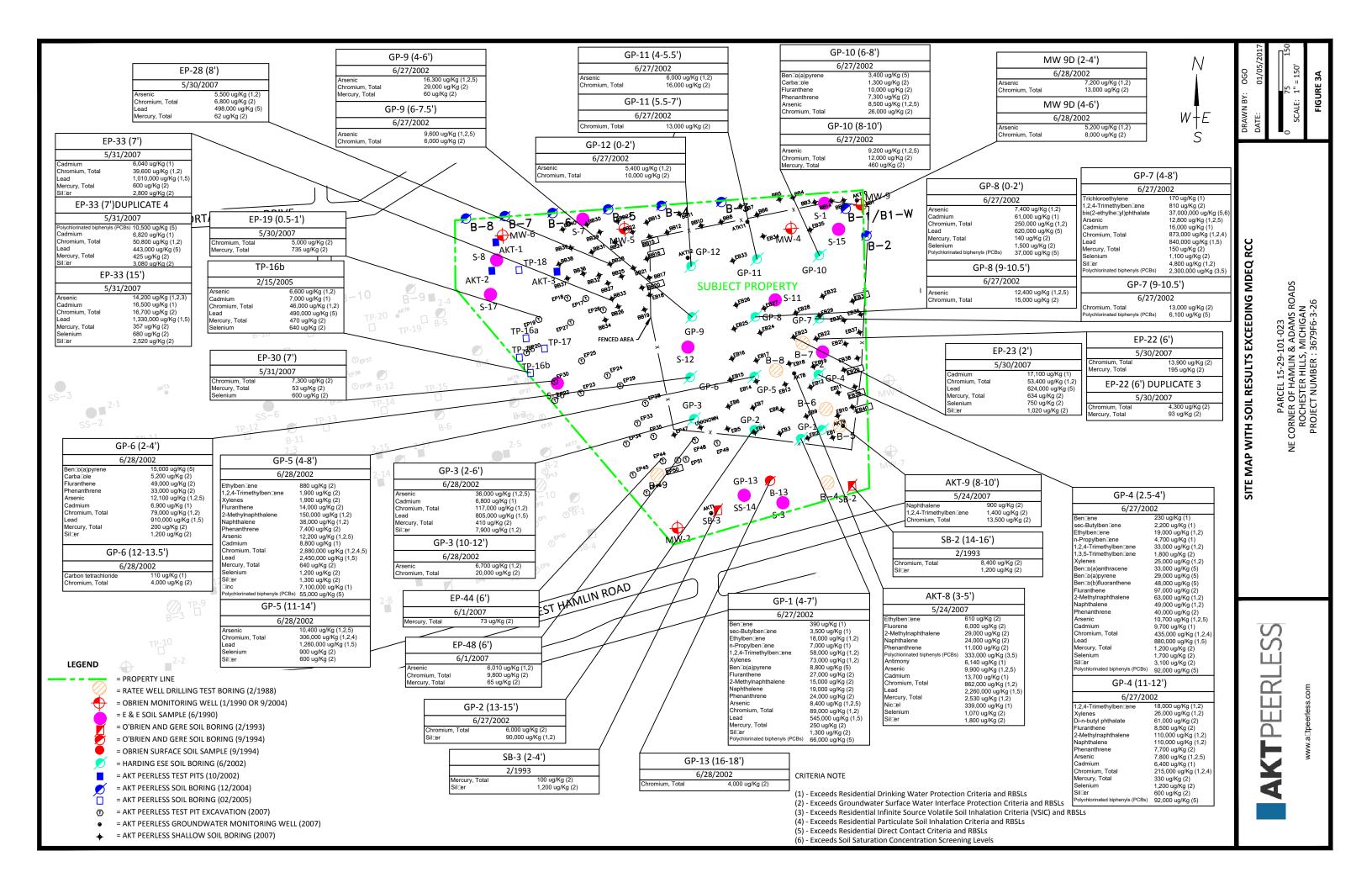
Table 3. Reimbursement Allocation Schedule

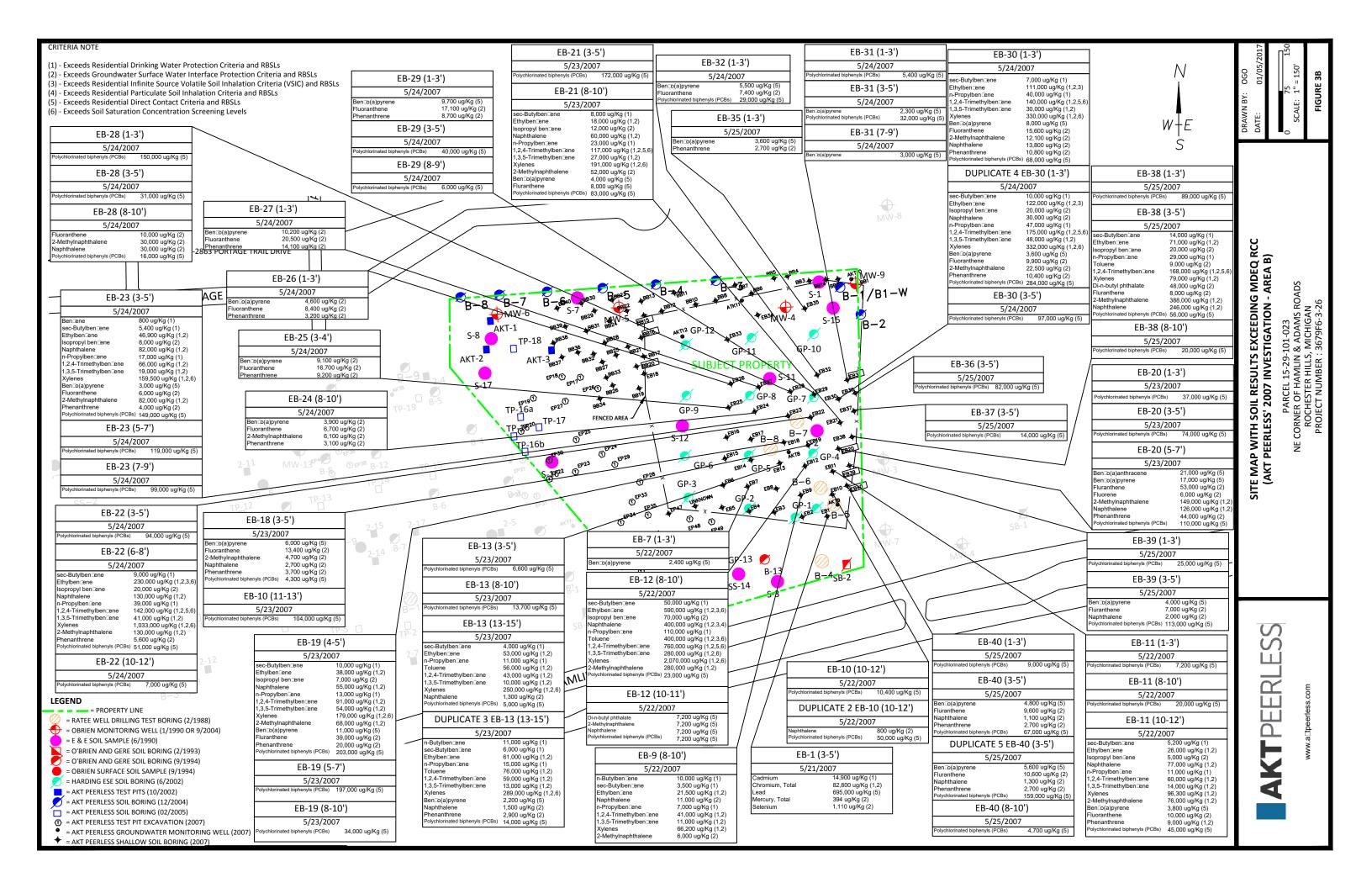
Legacy Rochester Hills Rochester Hills, MI AKT Peerless Project No. 3679F6 As of November 9, 2017

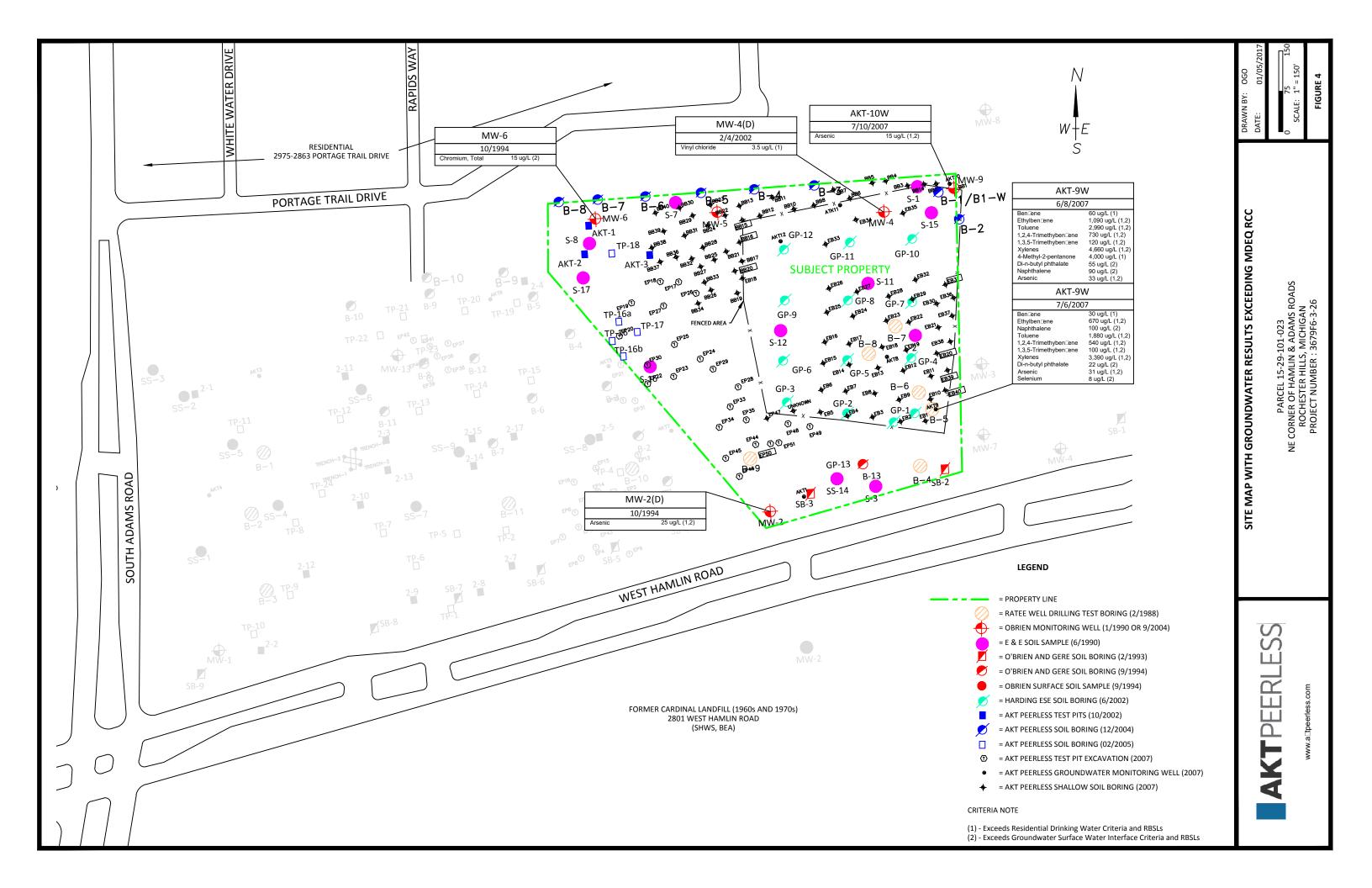
End Plan


Estimated Capture


Administrative Fees	\$ 240,000						
State Revolving Fund	\$ 1,287,667						
Local Revolving Fund	\$ 2,963,575						


																						LIIU FIAII
		11	12		13	14		15	16	:	17	18		19	20	21			22	23		24
Total State Incremental Revenue	\$	425,279 \$	434,22	9 \$	443,367	\$ 452,696	\$	462,222 \$	471,948	\$	481,877 \$	492,016	\$	502,367 \$	512,935	\$ 523	3,726	\$	534,743 \$	545,99	91 \$	557,476
State Brownfield Revolving Fund (3 mills of SE	\$	53,160 \$	54,27	79 \$	55,421	\$ 56,587	\$	57,778 \$	58,993	\$	60,235 \$	61,502	\$	62,796 \$	64,117	\$ 65	,466	\$	66,843 \$	68,24	49 \$	69,685
Local Brownfield Revolving Fund (3% of captur	\$	12,758 \$	13,02	27 \$	13,301	\$ 13,581	\$	13,867 \$	14,158	\$	14,456 \$	14,760	\$	15,071 \$	15,388	\$ 15	5,712	\$	16,042 \$	16,38	80	
State TIR Available for Reimbursement	\$	359,361 \$	366,92	24 \$	374,645	\$ 382,529	\$	390,578 \$	398,796	\$	407,186 \$	415,753	\$	424,500 \$	433,430	\$ 442	2,548	\$	451,858 \$	461,36	63 \$	487,792
Total Local Incremental Revenue	¢	347.110 \$	354,42	л ¢	361,872	\$ 369,487	٠ ,	377,262 \$	385,200	¢	393,304 \$	401,579	¢	410,028 \$	418,654	\$ 427	7.461	¢	436,453 \$	445,63	2 <i>1</i> \$	455,007
BRA Administrative Fee	¢	10.000 \$	10,00		10,000	•		10,000 \$	•	•	10,000 \$	10,000		10,000 \$	10,000	•	0,000	'	10,000 \$	•	00 \$	10,000
Local Brownfield Revolving Fund (3% of captur	ب ذ	10,000 \$	10,63		10,856			11,318 \$			11,799 \$	12,047		12,301 \$	12,560	•	2,824	Ą	10,000 \$	10,00	υυ ,	10,000
Local TIR Available for Reimbursement	ڊ خ	326,696 \$	333,78		341,016			355,944 \$	•	•	371,505 \$	379,532		387,727 \$	396,094		i,637	¢	426,453 \$	435,63	2/I ¢	445,007
Local TIK Available for Reinibursement	Ą	320,090 9	333,76	, , ,	341,010	ÿ 340,402	٠,	333,344 3	303,044	Ą	371,303 3	373,332	ڔ	367,727 3	330,034	ÿ 4 04	,037	Ą	420,433 3	433,03	J4 J	443,007
Total State & Local TIR Available	\$	686,057 \$	700,70	6 \$	715,661	\$ 730,931	. \$	746,521 \$	762,439	\$	778,691 \$	795,285	\$	812,227 \$	829,524	\$ 847	,185	\$	878,311 \$	896,99	96 \$	932,799
DEVELOPER																						
	\$	7,951,761 \$	7,251,0	55 \$	6,535,394	\$ 5,804,463	\$	5,057,942 \$	4,295,502	\$ 3,	516,811 \$	2,721,526	\$	1,909,299 \$	1,079,775	\$ 499	9,086	\$	47,228 \$		0 \$	
<u>STATE Reimbursement Balance</u>		4,535,975 \$	4,169,05		3,794,406	\$ 3,411,877		3,021,300 \$	2,622,504		215,318 \$	1,799,565	\$	1,375,065 \$	941,634		9,086	\$	47,228 \$		0 \$	(
Eligible Activities Reimbursement	\$	359,361 \$	366,92		374,645	\$ 382,529		390,578 \$	398,796		99,650 \$	-	\$	- \$	-	\$	-	\$	- \$		\$	-
Environmental Eligible Activities	\$	359,361 \$	366,92	24 \$	374,645	\$ 382,529	\$	390,578 \$	398,796	\$	99,650 \$	-	\$	- \$	-	\$	-	\$	- \$	-	\$	-
Interest Reimbursement	\$	- \$	-	\$	- :	\$ -	\$	- \$	-		307,537 \$	415,753		424,500 \$	433,430		2,548		451,858 \$		28 \$	-
Environmental Portion	\$	- \$	-	\$	- !	\$ -	\$	- \$	-	\$	307,537 \$	415,753	\$	424,500 \$	433,430	\$ 442	2,548	\$	451,858 \$	47,2	28 \$	-
Total STATE TIR Reimbursement	\$	359,361 \$	366,92	24 \$	374,645	\$ 382,529	\$	390,578 \$	398,796	\$	407,186 \$	415,753	\$	424,500 \$	433,430	\$ 442	2,548	\$	451,858 \$	47,27	28 \$	-
LOCAL Reimbursement Balance	\$	3,415,786 \$	3,082,00)4 \$	2,740,988	\$ 2,392,586	\$	2,036,642 \$	1,672,998	\$ 1,	301,493 \$	921,961	\$	<i>534,235</i> \$	138,141	\$	-	\$	- \$		\$	-
Eligible Activities Reimbursement	\$	326,696 \$	333,78	32 \$	341,016	\$ 348,402	\$	333,453 \$	-	\$	- \$	-	\$	- \$	-	\$	-	\$	- \$,	\$	-
Environmental Eligible Activities	\$	326,696 \$	333,78	32 \$	341,016	\$ 348,402	\$	333,453 \$	-	\$	- \$	-	\$	- \$	-	\$	-	\$	- \$	-	\$	-
Interest Reimbursement	\$	- \$	-	\$	- !	\$ -	\$	22,491 \$	363,644	\$	371,505 \$	379,532	\$	387,727 \$	396,094	\$ 138	3,141	\$	- \$	-	\$	-
Environmental Portion	\$	- \$	-	\$	- :	\$ -	\$	22,491 \$	363,644	\$	371,505 \$	379,532	\$	387,727 \$	396,094	\$ 138	3,141	\$	- \$	-	\$	-
Total LOCAL TIR Reimbursement	\$	326,696 \$	333,78	32 \$	341,016	\$ 348,402	\$	355,944 \$	363,644	\$	371,505 \$	379,532	\$	387,727 \$	396,094	\$ 138	3,141	\$	- \$	-	\$	-
Total Annual Developer Reimbursement	\$	686,057 \$	700,70	6 \$	715,661	\$ 730,931	. \$	746,521 \$	762,439	\$	778,691 \$	795,285	\$	812,227 \$	829,524	\$ 580),689	\$	451,858 \$	47,2	28 \$	-
LOCAL BROWNFIELD REVOLVING																						
FUND																						
		0	0		0	0		0	0		0	0		0	0	0			1	2		3
LBRF Deposits	Ś	23,172 \$	23,6	9 \$	24,157		Ś	25,185 \$	25,714	\$	26,255 \$	26,808	\$	27,372 \$	27,948	\$ 295	5,032	\$	442,495 \$	849,76	68 \$	932,799
	Ą	23,172 7	23,0	,,	,,	,	•	/ +	-,	•	-,	,	•	, .								
STATE	\$	12,758 \$		27 \$	13,301			13,867 \$	-		14,456 \$	14,760		15,071 \$	15,388	\$ 15	,712	\$	16,042 \$	414,13	35 \$	487,792




Attachment D Environmental Documentation

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

SEP 1 1 2008

REPLY TO THE ATTENTION OF:

L-8J

Mr. Derek Delacourt Deputy Director, Planning and Development The City of Rochester Hills 1000 Rochester Hills Drive Rochester Hills, Michigan 48309

> Re: Christianson Landfill Site (site) Hamlin Adams Brownfield Redevelopment Project

Dear Mr. Delacourt:

The U.S. Environmental Protection Agency, Region 5, has reviewed information regarding the environmental history and proposed plans for the Hamlin Adams Brownfield Redevelopment Project. EPA also has discussed the project with the Michigan Department of Environmental Quality (MDEQ).

Based on our review of the information and discussions with MDEQ, EPA has determined that, under 40 CFR § 761.50(b)(3)(i)(A) of the PCB regulations, the site is presumed not to present an unreasonable risk to health or the environment. EPA made this determination based on the understanding that the PCB contamination occurred prior to 1978, and currently there is no ongoing release of PCBs to the environment. As long as there is no ongoing release of PCBs to the environment from this site, EPA will take no action on this project. MDEQ will oversee remedial action at this site.

If you have any questions regarding this decision, please do not hesitate to contact me, or your staff may contact Jean Greensley, of my staff, at 312-353-1171.

Margaret M. Guerriero

Director

Land and Chemicals Division

cc: Mr. Ben Mathews, MDEQ

February 20, 2008

Ms. Jean M. Greensly (LC-8J)
US Environmental Protection Agency
Toxics Section - Land and Chemicals Division
77 West Jackson Boulevard
Chicago, Illinois 60604

Subject: PCB Migration Risk at Christenson Landfill

Northeast Corner of Hamlin and Adams Roads

Rochester Hills, Michigan

Dear Ms. Greensley:

As we discussed on our conference call, it was mutually agreed that the above location was a pre-1978 unregulated landfill and thus not regulated by TSCA. However, you stated under certain circumstances when there was an imminent risk to human health the USEPA would take action. Therefore, you requested data to support that there was no such imminent risk to the community that would make this a site of interest to the USEPA.

Michigan has several sites such as these and they are typically regulated by the MDEQ. Due to the requirements of a consent judgment between the City of Rochester Hills and the developer, the USEPA's acknowledgement that they do not assert jurisdiction is required. Therefore, below please find the summary of the known data and the proposed remedy. The proposed remedy would further greatly reduce any existing risk to human health and the environment.

This is a Michigan Brownfield Redevelopment site and the parties are working closely with the MDEQ as to the appropriateness of the remedial action at the site. Ultimately, MDEQ's approval is required to ensure that the remedy sufficiently addresses potential risks to human health.

Therefore, AKT Peerless Environmental Services (AKT Peerless) is please to present a summary of the historical information collected from the Christenson Landfill site. During the 1960s, drums were illegally dumped at the site. Since 1984, several investigations and removal actions have been implemented at this site. The historical information presented in this letter is intended to evaluate the risks associated PCBs at the Christenson Landfill site.

March 24, 1986 – USEPA Letter to Michigan Department of Natural Recourses

On March 24, 1986, USEPA submitted a letter to the Michigan Department of Natural Resources (MDNR) and stated the following:

"This letter is in response to your request for the United States Environmental Protection Agency (USEPA) to assess the Christenson Landfill problem site in Oakland County, Michigan for a possible immediate removal action. USEPA has prepared and reviewed an Assessment for the site, and does not feel that an immediate removal is warranted at this time."

USEPA retained Roy F. Weston (Weston) to conduct a Site Assessment for the site. USEPA based their opinion on this assessment. According to the Weston report,

"The major threat to human health and the environment by the Christenson landfill is the potential for direct human contact with exposed drums and paint wastes. The site poses not apparent threat to groundwater contamination of

aquifers used by some local residents as sources of potable water. This conclusion is based on the following reasons:

- The area in question is underlain by 30 to 50 feet of clay.
- Water used by local residents is either from the Detroit Municipal Water System or from fairly deep private wells greater than 75 feet.

Weston further states, "that the site does not pose a threat to the drinking water supply of the surrounding community." Thus, the USEPA has already concluded that no material risk is associated with this site and that it has waived its jurisdiction and passed on jurisdiction to the State of Michigan.

August and December 1990 – Ecology and Environmental Groundwater Investigation

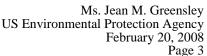
In 1990 Ecology and Environment conducted a groundwater investigation at the site. Ecology and Environment identified two water-bearing zones. The shallow water-bearing zone consisted interbedded sand and clay lenses. The predominant soil type in the shallow aquifer is sand. The shallow and deep-water bearing zones are separated by a clay aquitard. Monitoring wells installed at the site were screened in both water-bearing zones. Where the monitoring wells are nested, the shallow well is identified with "S" and the deeper well is identified with a "D". If neither letter is used, the well is screened in the shallow water-bearing zone.

Ecology and Environment collected groundwater samples in August 1990 and did not analyze the groundwater samples for PCBs.

November 8, 1994 – O'Brien & Gere Engineers' "Soil and Groundwater Survey"

In October 1994, the former property owner retained O'Brien & Gere Engineers to collect groundwater samples from nine monitoring wells at the site. These monitoring wells were called the following:

- MW1-S and MW1-D
- MW2-S and MW2-D
- MW5-S and MW5-D
- MW6
- MW13-S and MW-13-D


These eight of these monitoring wells were nested wells with the shallow wells (denoted "S") screened in the shallow water bearing zone and the deep wells (denoted "D") screened in the deeper water-bearing zone. The groundwater samples collected from these monitoring wells were analyzed for PCBs and no PCBs were detected.

<u>August 2000 – MDEQ Groundwater Monitoring</u>

In August 2000, the Michigan Department of Environmental Quality (MDEQ) collected groundwater samples from the monitoring wells at the site. MDEQ did not analyze the groundwater for PCBs.

January 2001 – Snell Environmental Group's "Final Construction Oversight Report"

Snell Environmental Group, Inc., was retained by the Michigan Department of Environmental Quality (MDEQ) to supervise the removal of buried drums and grossly contaminated soils. From March 3, 1999 to January 2000, Snell supervised the removal of approximately 2,220

cubic yards of crushed drums; drum contents, and grossly contaminated soil. Thus, even further reducing the risks to the environment.

October 9, 2007 – AKT Peerless Environmental Services' Additional Assessment Report

AKT Peerless completed an Additional Assessment at the Christenson Landfill site. During this assessment, AKT Peerless conducted two groundwater-sampling events in June 2007 and July 2007. Groundwater samples were collected from five monitoring wells. These wells were called the following:

- AKT-8
- AKT-9
- AKT-10
- AKT-11
- AKT-12

All five monitoring wells were located in the area of buried drums and were screened in the shallow water-bearing zone. Groundwater samples collected in June and July 2007 were analyzed for PCBs. No PCBs were detected in June or July 2007, demonstrating that the PCBs have not become mobile.

Summary

At least six groundwater-monitoring events have been conducted at the site. During three of the six groundwater-monitoring events the groundwater samples were analyzed for PCBs. No PCBs were detected in groundwater. Further, a source removal action was performed during 1999 and 2000. Based on these results, PCBs do not appear to pose a threat to migrate through groundwater.

Further, continued remedial actions are proposed for this site. These remedial actions include additional source removal and encapsulation of the remaining PCB contamination. As part of the encapsulation, a two-foot-thick clay wall keyed into native soil and covered with an FML liner and clay cap to restrict infiltration will surround the area of PCB contamination. By removing additional source material and restricting infiltration, the proposed remedial actions will further protect groundwater, thus reducing any risks with the remaining PCB contamination.

Therefore, in conclusion, this site should not be regulated by USEPA because of the following:

- 1. This is a pre-1978 unregulated landfill.
- 2. USEPA's own conclusion in 1986 was that "the major threat to human health and the environment by the Christenson landfill is the potential for direct human contact with exposed drums and paint wastes. The site poses no apparent threat to groundwater contamination of aquifers used by some local residents as sources of potable water.
 - USEPA has prepared and reviewed an Assessment for the site, and does not feel that an immediate removal is warranted at this time."
- 3. Studies undertaken between 1990 and 2001 confirm no change in risk from 1986.
- 4. In 2001, MDEQ acted on their jurisdiction and removed the majority of the source material from the site.
- 5. Recent data, as part of an MDEQ approved investigation work plan, confirms the lack of mobility of PCBs from this site.
- 6. MDEQ is providing and review and oversight for the proposed remedial actions.

Thus, due to the above, the additional proposed remedial activities and the oversight of the MDEQ should assist the USEPA in its determination that no USEPA jurisdiction exists.

It has been a pleasure working with you. If you have any further questions please contact me at (248) 615-1333.

Sincerely

AKT PEERLESS ENVIRONMENTAL SERVICES

Tony R. Anthony, CP, CHMM, CPG, REPA Principal

cc: Joe Dufficy, USEPA Brownfield Group

Derek Delacourt, City of Rochester Hills

Neil Silver, Strobl Cunningham

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5

EASTERN RESPONSE UNIT 9311 GROH ROAD

GROSSE ILE, MICHIGAN 48138-1697

MAR 2 4 1986

REPLY TSHKG ITENTION OF:

Mr. Andrew Hogarth, Chief Remedial Action Section GWQD Michigan Department of Natural Resources P.O. Box 30028 Lansing, MI 48909

Christenson Landfill Oakland County, MI

Dear Mr. Hogarth:

This letter is in response to your request for the United States Environmental Protection Agency (U.S. EPA) to assess the Christenson Landfill problem site in Oakland County, Michigan for a possible

U.S. EPA has prepared and reviewed an Assessment for the site, and does not feel that an immediate removal is warranted at this time. Available analytical data do not show or suggest an immediate and significant threat to public health, welfare, or the environment. However, if you obtain further information which indicates that an immediate threat does exist, please notify U.S. EPA, Eastern Response Unit, Grosse Ile, Michigan.

Although an immediate endangerment does not appear to exist at this site, the Michigan Department of Natural Resources should continue its investigation into possible long-term remedial actions.

I have enclosed a copy of the site assessment for the Christenson Landfill site. If you have any questions regarding this matter, please call Ross Powers, the On-Scene Coordinator for this site

Sincerely yours,

Robert M. Buckley, P.E., Zhief

Eastern Response Unit

Enclosure

cc: Oakland Co. Health Dept. w/Encl

FIGURE 9

LEGEND

EXISTING PROPERTY LINE PROPOSED DELISTING BOUNDRY APPROXIMATE LOCATION OF 400' X 325' FENCE SOIL BORING (INSTALLED BY O'BRIEN & GERE 9/94) SOIL BORING (INSTALLED BY ECOLOGY & ENVIRONMENT FIELD INVESTIGATION TEAM 6/90) 0 MONITORING WELL (INSTALLED BY PATRICK DRILLING INC. 6/80) MONITORING WELL (INSTALLED BY O'BRIEN & GERE 1/90) MONITORING WELL (INSTALLED BY O'BRIEN & GERE 9/94) NESTED SHALLOW/DEEP MONITORING WELL LOCATION (S/D) MONITORING WELL LOCATION ON CITY OF ROCHESTER HILLS PROPERTY (RH) TEST PIT (10' X 10' X 5') \boxtimes TRENCH (5' X 5' X 5') GEOLOGICAL CROSS SECTION GEOLOGICAL CROSS SECTION

WILLIAM JAMENS, ROMAN HALANSI & JOE BALOUS PROPERTY @ HAMLIN & ADAMS ROAD ROCHESTER HILLS, MICHIGAN

TEST PIT LOCATIONS
AND GEOLOGICAL
CROSS SECTIONS

SCALE

FILE NO. 5699.003-013

TABLE 4
Ground Water Sample Analytical Results
Christianson Dump Site
October 1994

*				Christ	lanson Dum October 19	•					-		-1		Type B Criteria
LOCATION	Analytical		MW1-8	MW1-D	MW2-S	MW2-D	MW5-8	MW5-D	MW6	MW13-5	MW13-D	MW-DUP	EQPBLNK	Type A Criteria	Health-Based Drinking Water Value
Analytical Parameter	Method	Unite	<1.0	<1.0	<1.0	25.0	4.2	9.3	3.0	3.6	13.0	3.9	3.4	1	0.02(C)
Arsenic	6020 6020	ug/L ug/L	123	191	181	223	276	157	<100	337	331	308	< 100	200	2,400(C)
Barlum	6020	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.2	4.3	0.2	3.5(C)
Cadmium	6020	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	15	<1.0	<1.0	<1.0	< 1.0	1	120(C)
Chromium		ug/L	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	25	1,300(C)
Copper	6020 6020	ug/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	4.0	<3.0	<3.0	<3.0	<3.0	3	4(C)
Lead	7470	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.5	< 0.2	< 0.2	< 0.2	< 0.2	0.2	2.1(C)
Mercury	7740	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5	35(C)
Selenium	6020	ug/L	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	0.5	33(C)
Silver	6020		100	58.0	124	41.0	140	158	102	114	31.0	152	44	20	2,300(C)
Zinc	8080	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2		
Aroclor-1018	8080	ug/L ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1	
Aroclor-1221	8080		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		
Aroclor-1232		ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	l	
Aroclor-1242	8080	ug/L	2000	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	1	
Aroclor-1248	8080	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	1	
Aroclor-1254	8080	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2		
Aroclor-1260	8080	ug/L	<0.2	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1	
Aldrin	8080	ug/L	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Alpha-BHC	8080	ug/L	<0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1	
Beta-BHC	8080	ug/L	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1	
Delta-BHC	8080	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Gamma-BHC	8080	ug/L		<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Chlordane	8080	ug/L	<0.01	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02		
4,4'-DDD	8080	ug/L	<0.02 <0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	1	
4,4'-DDE	8080	ug/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	1	
4,4'-DDT	8080	ug/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Dieldrin	8080	ug/L		<0.02	<0.02	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Endosultan I	8080	ug/L	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	1	
Endosulfan II	8080	ug/L	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Endosulfan Sulfate	8080	ug/L	< 0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	1	
Endrin	8080	ug/L	<0.02	<0.02	555,000		<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01		
Endrin Aldehyde	8080	ug/L	< 0.01	< 0.01	< 0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01		
Endrin Ketone	8080	ug/L	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
Heptachlor	8080	ug/L	<0.01	<0.01	<0.01	<0.01	< 0.01		<0.01	<0.01	<0.01	< 0.01	<0.01		
Heptachlor Epoxide	8080	ug/L	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01		<0.01	<0.05	<0.05	< 0.05		
4,4-Methoxychlor	8080	ug/L	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<1.0	<1.0	<1.0	<1.0	1	
Toxaphene	8080	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V 1.0	1 1.0	1 71.0			

Notes:

- 1. Samples analyzed by Environmental Quality Laboratories, Inc. of Sterling Heights, Mi.
- 2. Samples collected on October 3 5, 1994 by O'Brien & Gere Engineers, Inc.
- 3. "<" denotes less than the indicated detection limit of test.
- 4. "C" denotes background as defined in Rule 701(c), may be substituted as the cleanup criteria if higher than the Type B cleanup criteria.

Page 1 of 4

TABLE 4 - Continued Ground Water Sample Analytical Results Christianson Dump Site October 1994

LOCATION			363000000000000000000000000000000000000	30000, 100, 20	3000 Davis	100000000000000000000000000000000000000	6.566.7766	5.500.0000000	100000000000000000000000000000000000000	Addison to the		100000000000000000000000000000000000000	
- X (1) 2	Analytical		MW1.5	MW1-D	MW2-8	MW2-D	MW5-8	MW5-D	MWd	MW13-8	MW13-D	MW-DUP	EQPBLNK
Analytical Parameter	Method	Unite											
Acenaphthene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0
Acenephthylene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Anthracene	8270	ug/L	<20	< 20	<20	<20	<20	<20	<20	<20	< 20	<20	<20
Benzoic Acid	8270	ug/L	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzo(a)anthracene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzo(b)fluoranthene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0
Benzo(k)fluoranthene	8270	ug/L	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzo(g,h,l)perylene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzo(a)pyrene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzyl Alcohol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-chloroethoxy)methane	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-chloroethyl)ether	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-chlorolsopropyl)ether	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Bromophenyl phenyl ether	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Butyl benzyl phthalate	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Chloroaniline	8270	ug/L	<20	< 20	<20	<20	< 20	<20	<20	< 20	<20	<20	<20
4-Chloro-3-methylphenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Chloronaphthalene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Chlorophenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Chlorophenyl phenyl ether	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chrysene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibenzo (a,h)anthracene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibenzofuran	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
DI-n-butylphthalate	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichlorobenzene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
3,3'-Dichlorobenzidine	8270	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4-Dichlorophenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Diethyl phthalate	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0		
2,4-Dimethylphenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0		<5.0	<5.0
Dimethyl phthalate	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0

Notes:

- 1. Samples analyzed by Environmental Quality Laboratories, Inc. of Sterling Heights, Mi.
- 2. Samples collected on October 3 5, 1994 by O'Brien & Gere Engineers, Inc.
- 3. "<" denotes less than the Indicated detection limit of test.

JAJ8:JOEDATA3.WQ1

Page 2 of 4

TABLE 4 - Continued
Ground Water Sample Analytical Results
Christianson Dump Site
October 1994

LOCATION	N. (100 NO.)					Exercise Control	4 (000000000000000000000000000000000000	030000000000000000000000000000000000000	000000000000000000000000000000000000000	DOMESTIC DESCRIPTION	B0-00-00000000000000000000000000000000		
	Analytical		MW1-8	MW1-D	MW2-8	MW2-D	MW5-9	MW5-D	MWe	MW13-8	MW13-D	MW-DUP	EQPBLNK
Analytical Parameter	Method	Units											
4,6-Dinitro-2-methylphenol	8270	ug/L	< 20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4-Dinitrophenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4-Dinitrotoluene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,6-Dinitrotoluene	8270	ug/L	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Di-n-octyl phthalate	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Fluoranthene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0
Fluorene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0
Hexachlorobenzene	8270	ug/L	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	180.00
Hexachlorobutadiene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0
Hexachlorocyclopentadiene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0		<5.0
Hexachloroethane	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0		<5.0	<5.0
Indeno(1,2,3-cd)pyrene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0		<5.0	<5.0	<5.0
Isophorone	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0
2-Methylnaphthalene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0
2-Methylphenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0		<5.0	<5.0	<5.0
4-Methylphenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0	< 5.0
Naphthalene	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0
2-Nitroaniline	8270	ug/L	<20	<20	<20	<20	<20	<20		<5.0	<5.0	<5.0	<5.0
3-Nitroaniline	8270	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
4-Nitroaniline	8270	ug/L	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	< 20
Nitrobenzene	8270	ug/L	<5.0	<5.0	<5.0	< 5.0	<5.0		<20	<20	<20	<20	<20
2-Nitrophenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Nitrophenol	8270	ug/L	<20	<20	<20	<20		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
N-Nitrosodiphenylamine	8270	ug/L	<5.0	<5.0	<5.0		<20	<20	< 20	<20	<20	<20	<20
N-Nitrosodi-n-propylamine	8270	ug/L	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Pentachlorophenol	8270	ug/L	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Phenathrene	8270	ug/L	<5.0	-20.000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Phenoi	8270	ug/L ug/L	<5.0 <5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
Pyrene	8270	ug/L	<5.0 <5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
1,2,4-Trichlorobenzene	8270			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4,5-Trichlorophenol	8270	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4,6-Trichlorophenol	8270	ug/L	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0
- The Themore phenor	8270	ug/L	<5.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0

Notes:

- 1. Samples analyzed by Environmental Quality Laboratories, Inc. of Sterling Heights, Ml.
- 2. Samples collected on October 3 5, 1994 by O'Brien & Gere Engineers, Inc.
- 3. "<" denotes less than the indicated detection limit of test.

JAJ8:JOEDATA3.WQ1

Page 3 of 4

TABLE 4 - Continued **Ground Water Sample Analytical Results** Christianson Dump Site October 1994

		<u>\</u>								MW13-8	MW13-D	MW-DUP	EGPBLNK
LOCATION Analytical			MW1-8	MW1-D	MW2-8	MM3-D	MW5-8	MW8-D	MW6	MW13-5	W)11,3-2		
	Method	Unite								<1.0	<1.0	<1.0	<1.0
Inalytical Parameter	200	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Promodichloromethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	8010	ug/L	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	1.5 40.57	<1.0	<1.0	<1.0
Bromomethane	8010		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon tetrachloride	8010	ug/L ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	8010		<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chloroethyl Vinyl Ether	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	8010	ug/L	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	8010	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
1,2-Dichlorobenzene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	3 (0.00)	<1.0
Dichlorodifluoromethane	8010	ug/L	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloroethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethylene	8010	ug/L	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichlorosthylens	8010	ug/L	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloropropane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cls-1,3-Dichloropropylene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropylene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Methylene Chloride	8010	ug/L	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-Tetrachloroethane	8010	ug/L	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 1.0
Tetrachloroethylene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.1-Trichloroethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethans	8010	ug/L	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethylene	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
The second secon	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	8010	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0			<1.
Vinyl Chloride	8020/5030	164	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.
Benzene	8020/5030		<1.0	<1.0	<1.0	<1.0	<1.0	1 5.50					<1.
Toluene	8020/5030			<1.0	<1.0	<1.0	<1.0	200	<1.0	70.0			
Ethyl Benzene	8020/5030		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	1 13.0		
Xylenes	8020/503	ug/L	70.0										Page 4

Notes:

Samples analyzed by Environmental Quality Laboratories, Inc. of Sterling Heights, Mi,

2. Samples collected on October 3 - 5, 1994 by O'Brien & Gere Engineers, Inc.

3. "<" denotes less than the indicated detection limit of test.

JAJ8:JOEDATA3.WQ1

Appendix B Resolutions

Appendix C Executed Reimbursement Agreement

Appendix D Supplemental Material