McDowell & Associates

Geotechnical, Environmental & Hydrogeological Services • Materials Testing & Inspection

21355 Hatcher Avenue, Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

January 2, 2023

Ms. Bukurije Logu 1497 Walton Boulevard Rochester Hills, Michigan 48309

Job No. 22-16348

Attention: Ms. Bukurije Logu

Subject: Limited Phase II Environmental Site Assessment

Approximate 32.49-Acre Parcel

1406 E. Avon Road

Rochester Hills, Oakland County, Michigan

Dear Ms. Logu,

Pursuant to your request, McDowell & Associates has completed a Limited Phase II Environmental Site Assessment (ESA) for the subject property. A Site Location Map, which shows the approximate location of the subject property, accompanies this report as Attachment I.

The purpose of this Limited Phase II ESA was to investigate fill on the subject property to support completion of a Baseline Environmental Assessment.

As part of this investigation, a total of six test pits were made and five soil samples, plus one duplicate soil sample, were obtained and submitted for chemical testing.

Results of chemical testing showed metals and PNAs in soil at concentrations above EGLE Generic Residential Criteria and EGLE Residential VIAP Screening Levels.

Test results indicate the subject property meets the definition of a "facility" under Part 201 of Michigan Public Act 451 and a Baseline Environmental Assessment could be performed. The "facility" owner and operator will have due care obligations. The scope of work for this Limited Phase II ESA was completed to support a new BEA. A supplemental investigation is required at the property to address due care.

This report was completed for the exclusive use of United Tech Construction LLC, and they may rely on its contents.

The results of our investigation are presented below.

Background

McDowell & Associates was retained on December 13, 2022 to complete a Phase II ESA for the subject property. It was indicated that a Phase I ESA was underway by others and anticipated to be completed on December 28, 2022.

Prior to completion of field work, McDowell & Associates reviewed in-house historical sources for the subject property including aerial photographs, topographic maps, the USDA Soil Survey, and a Baseline Environmental Assessment (BEA) for the west adjoining property. Also included in the BEA for the west adjoining property was a "Draft" Preliminary Soils Investigation prepared by McDowell & Associates for the subject property and the west adjoining property on April 6, 2004 (McDowell & Associates' Job No. 04-142).

As part of the "Draft" Preliminary Soils Investigation, McDowell & Associates witnessed 16 test pits and one hand auger boring on the property. Fourteen of the test pits (TP-1 through TP-7, TP-9 through TP-13, TP-16, and TP-17) were made on the subject property. The approximate locations in which test pits and soil borings were made are shown on the accompanying Soil Boring, Test Pit, and Sample Location Map.

Test pits made on the subject property encountered fill containing varying amounts of tree stumps and limbs, concrete, and general household refuse such as bottles to depths up to 12' underlain by brown, gray, and variegated sand with silt and gravel content. The Log of Test Pit Sheets from that investigation, are attached.

The scope of work for this Phase II ESA was completed to investigate fill on the subject property to support completion of a Baseline Environmental Assessment.

Previous Phase I ESA

McDowell & Associates was provided a copy of a Phase I ESA prepared by Michigan Consulting & Environmental, dated December 28, 2022. That Phase I ESA also referenced the BEA (including Phase I ESA and Phase II ESA) for the west adjoining property, the "Draft" Preliminary Soils Investigation by McDowell & Associates, and a Brownfield Redevelopment Assessment Report prepared by MDEQ [now EGLE] for the subject property and adjoining land to the west in 2011.

That report identified the following recognized environmental conditions in connection with the subject property:

- 1. "The listing of the Property as part of a parent parcel which was identified as a facility where contaminants above Part 201 CCRRA [cleanup criteria requirements for response activities] are known to exist from the Property's historical use as a woodfill, tree farm and reported dumping of household refuse"
- 2. "The presence of a 55-gallon drum which was reported to have leaked an unknown liquid to the subsurface environment based on prior reports"

- 3. "The listing of the east and southeast adjacent parcels as the former SOCRRA landfill and composting facility identified under multiple regulatory facility listings and their close proximity to the Property"
- 4. "The listing of two LUST sites within the minimum prescribed search distance which were up gradient to the Property"
- 5. "Due to the presence of several contaminants in the soil above multiple Part 201 CCRRA, a VEC [vapor encroachment condition] to future buildings and/or structures cannot be ruled out."

Field Work

On December 22, 2022, McDowell & Associates witnessed six test pits, designated 1 through 6, on the subject property. Test pit locations were biased to areas with known suspect fill. A Soil Boring, Test Pit, and Sample Location Map, which shows the approximate locations in which test pits were made, accompanies this report as Attachment II.

Subsurface conditions encountered in TP-2 through TP-6 generally consisted of sandy topsoil and sand fill with varying amounts of debris including glass, metal, brick, concrete, possible slag, tire, ceramic, and wood to depths up to 6' underlain by moist brown sand. No suspect fill was noted in TP-1. Subsurface conditions encountered at each test pit location are shown on the Log of Test Pit Sheets which are included as Attachment III.

Test pit spoils were screened with a MiniRAE 2000 photoionization detector (PID) to estimate the presence of volatile organic compound (VOC) vapors. No VOC vapors were detected with the PID.

Soil samples obtained as part of this assessment were placed in labeled, pre-cleaned jars and stored in an ice-chest until delivery to a representative of Merit Laboratories, Inc. of East Lansing, Michigan for chemical testing. Soil samples were preserved for VOC analyses in general accordance with EPA Method 5035A. Sample chain-of-custody documentation accompanies this report with chemical test results.

Chemical Testing Program

The following table summarizes sampling completed at the property as part of this Limited Phase II ESA.

Sample ID	Date	Matrix	Sample Depth	Chemical Testing Program
2a	12/22/2022	Soil	2'-3'	10 MM, PNAs
2a-D	12/22/2022	Soil	Duplicate	10 MM, PNAs
3a	12/22/2022	Soil	2'-3'	10MM, VOCs, PNAs, PCBs
3b	12/22/2022	Soil	5'- 6'	10MM, VOCs
4a	12/22/2022	Soil	1'- 2'	10MM, pesticides
5a	12/22/2022	Soil	0'-1'	10MM, pesticides, PNAs, PCBs

VOCs- volatile organic compounds (Method 8260C- soil) PNAs- polynuclear aromatic hydrocarbons (Method 8270D) PCBs- polychlorinated biphenyls (Method 8082)

Pesticides- Method 8081

10MM- 10 Michigan Metals: arsenic, barium, cadmium chromium, copper, lead, selenium, silver, zinc (Method 6020) and mercury (Method 7471)

Chemical Test Results

The accompanying Tables 1 through 4 summarize chemical test results in comparison to current EGLE Generic Residential Criteria (December 2013) and EGLE Residential and Non-Residential Volatilization to Indoor Air Pathway (VIAP) Screening Levels (September 2020).

Individual chemical test results accompany this report as Attachment IV.

Metals

Arsenic was detected in 2a, 2a-D, 3a, and 4a and total lead was detected 2a-D, 3a, and 4a at concentrations above EGLE Statewide Default Background Levels and EGLE Generic Residential Direct Contact and Groundwater Protection Criteria. Fine and coarse fraction lead testing would be required to investigate total lead concentrations at 2a, 3b, and 5a.

Barium, cadmium, total chromium, copper, selenium, silver, and zinc were detected in some or all of soil samples 2a, 2a-D, 3a, 3b, and 4a above EGLE Statewide Default Background Levels and EGLE Generic Residential Groundwater Protection Criteria.

Total chromium was detected in 3a at a concentration above the EGLE Generic Residential Particulate Soil Inhalation Criterion for hexavalent chromium. Additional testing would be required to investigate the chromium type.

Mercury was detected in each of the soil samples above the Statewide Default Background Level, the EGLE Generic Residential GSI Groundwater Protection Criterion, and EGLE VIAP Screening Level.

Volatile Organic Compounds

2-Methylnaphthalene, naphthalene, toluene, and xylenes were detected in Soil Sample 3a at concentrations below EGLE Generic Residential Criteria. The detected concentration of naphthalene in 3a exceeds the EGLE Residential VIAP Screening Level.

p-Isopropyltoluene was detected in Soil Samples 3a and 3b at a concentration of 100 ug/kg. There are no published EGLE Generic Residential Criteria or EGLE VIAP Screening Levels for p-isopropyltoluene.

Polynuclear Aromatic Hydrocarbons

PNAs were detected in Soil Samples 2a, 2a-D, 3a, and 5a.

The detected concentrations of benzo(a)pyrene in 2a, 2a-D, and 3a exceed the EGLE Generic Residential Direct Contact Criterion.

The detected concentrations of fluoranthene in 2a and 3a exceed the EGLE Generic Residential Groundwater Surface Water Interface (GSI) Groundwater Protection Criterion.

The detected concentrations of phenanthene in 2a, 2a-D, and 3a exceed the EGLE Generic Residential GSI Groundwater Protection Criterion and the EGLE Residential VIAP Screening Level.

Polychlorinated Biphenyls

No PCBs were detected in Soil Sample 4a.

PCBs were detected in Soil Sample 4a, but at concentrations below EGLE Generic Residential Criteria. EGLE has not published Residential VIAP Screening Levels for PCBs. According to a Footnote, EGLE indicates insufficient physical chemical parameters to calculate a VIAP Screening Level for soil. "If detections are present in specified media, health-based soil vapor value should be used to evaluate risk."

Pesticides

The pesticides 4,4-DDD, 4,4-DDE, and/or 4,4-DDT were detected in Soil Samples 3a and 4a, but at concentrations below EGLE Generic Residential Criteria and EGLE Residential VIAP Screening Levels.

Limitations

McDowell & Associates was retained on December 13, 2022 to complete a Phase II ESA for the subject property. Work associated with this report was completed in a rapid manner with limited time to review existing data due to this late retention date. In order to meet the timeline for completion of a Baseline Environmental Assessment, field work was conducted prior to receipt of a Phase I ESA prepared by others on December 28, 2022. This timing had a negative effect on scope of work and data available from which to make recommendations.

No environmental assessment can eliminate uncertainty regarding the potential for recognized environmental conditions or the presence of contaminants in connection with a property. This environmental assessment is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions in connection with the property within reasonable limits of time and cost. The conclusions represent our professional opinion based upon information obtained during assessment procedures and may not represent those that would be made under other conditions.

Nothing in this report constitutes a legal opinion or legal advice. It is suggested that environmental counsel be retained to evaluate site conditions and transaction-related issues from a legal perspective.

Property lines shown on maps are estimates and are limited by scale inaccuracies. The approximate boundaries shown on report attachments are not intended to be exact, but rather approximations to assist with review.

Conclusions

McDowell & Associates has completed a Limited Phase II Environmental Site Assessment (ESA) for the subject property. The purpose of this Limited Phase II ESA was to investigate fill on the subject property to support completion of a Baseline Environmental Assessment.

As part of this investigation, a total of six test pits were made and five soil samples, plus one duplicate soil sample, were obtained and submitted for chemical testing.

Results of chemical testing showed metals and PNAs in soil at concentrations above EGLE Generic Residential Criteria and EGLE Residential VIAP Screening Levels.

Test results indicate the subject property meets the definition of a "facility" under Part 201 of Michigan Public Act 451 and a Baseline Environmental Assessment could be performed. The "facility" owner and operator will have due care obligations. The scope of work for this Limited Phase II ESA was completed to support a new BEA. A supplemental investigation is required at the property to address due care.

If you have any questions regarding the information contained in this report, or if we can be of further service, please do not hesitate to call.

Very truly yours,

McDOWELL & ASSOCIATES

Jennifer Lagerbohm, M.S., CHMM

Senior Industrial Hygienist

Douglas M. McDowell, M.S. P.E

Vice President

JL/jl

Attachments

Table 1: Summary of Metals Chemistry Results (Soil)

Table 2: Summary of Detected SVOCs Chemistry Results (Soil)

Table 3: Summary of Detected VOCs Chemistry Results (Soil)

Table 4: Summary of Pesticides and PCBs Chemistry Results (Soil)

Attachment I- Site Location Map

Attachment II- Test Pit and Sample Location Map

Attachment III- Log of Test Pit Sheets

Attachment IV- Chemical Test Results with Chain-of-Custody Documentation

Table 1 Summary of Metals Chemistry Results (Soil)

TABLE 1 - SUMMARY OF METALS CHEMISTRY RESULTS (Soil)

Sample	Date	Description	Arsenic 7440382	Barium 7440393	Cadmium 7440439	Total Chromium 18540299	Copper 7440508
2a	12/22/2022	2'- 3'	13.3	844	4.71	22.2	131
2a-D	12/22/2022	duplicate	13.9	727	6.86	19.8	494
3a	12/22/2022	2'- 3'	24.5	862	7.64	303	1,710
3b	12/22/2022	5'- 6'	6.88	271	0.92	8.86	69.4
4a	12/22/2022	1'- 2'	17.3	598	6.50	24.6	167
5a	12/22/2022	0'- 1'	4.65	63.5	0.50	14.2	31.6
	. 2/22/2022	• .		00.0	0.00	2	
EGLE Statewide	d Ll-			7-	4.0	40	••
Default Backgroun EGLE Generic Res			5.8	75	1.2	18	32
Groundwater Prote			4.6/4.6	1,300/440(7)	6.0/3.6(7)	30/3.3	5,800/75(7)
EGLE Generic Res			7.0/7.0	1,300/440(1)	0.0/0.0(//	30/3.3	3,000/13(1)
Particulate Soil Inh			720	330,000	1,700	260	130,000
EGLE Generic Non	-Residential			•	•		
Particulate Soil Inh			910	150,000	2,200	240	59,000
EGLE Generic Res							
Soil Inhalation Crit			NLV	NLV	NLV	NLV	NLV
EGLE Generic Res Direct Contact Crit			7.6	37,000	550	2,500	20,000
EGLE Generic Non			7.0	31,000	550	2,500	20,000
Direct Contact Crit			37	130,000	2,100	9.200	73.000
Sample	Date	Description	Total Lead 7439921	Mercury 7439976	Selenium 7782492	Silver 7440224	Zinc 7440666
2a	12/22/2022	2'- 3'	322	0.357	0.63	1.13	489
2a-D	12/22/2022	duplicate	999	0.323	1.01	2.31	723
3a	12/22/2022	2'- 3'	1,370	0.812	1.67	4.95	1,050
3b	12/22/2022	5'- 6'	270	0.228	0.60	1.62	215
4a	12/22/2022	1'- 2'	966	1.014	1.11	1.33	2,220
5a	12/22/2022	0'- 1'	164	0.183	<0.40	<0.20	124
EGLE Statewide							
Default Backgroun			21	0.13	0.41	1.0	47
	Volatilizataion to Ind	oor		0.000			
Air Pathway (VIAP) EGLE Generic Res				0.022			
Groundwater Prote			700/5,100(7)	1.7/0.05	4.0/0.4	4.5/0.1	2,400/169(7)
EGLE Generic Res			700/0,100(7)	1.770.00	4.0/0.4	4.5/0.1	2,400/103(1)
Particulate Soil Inh			100,000	52 (48-indoor)	130,000	6,700	ID
EGLE Generic Non							
Particulate Soil Inh			44,000	62 (89- indoor)	59,000	2,900	ID
EGLE Generic Res			NII M	0.50	A11.37	AU 37	AU 37
Soil Inhalation Crit EGLE Generic Res			NLV	0.52	NLV	NLV	NLV
Direct Contact Crit			400	160	2,600	2,500	170,000
EGLE Generic Non			700	100	2,000	2,000	110,000
Direct Contact Crit			900	580	9,600	9,000	630,000
						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

NOTES:

- 1. All values expressed in mg/kg
- Michigan Department of Environment, Great Lakes, and Energy (EGLE) Generic Criteria from Table 2. Soil: Residential, and Table 3. Soil: Nonresidential. Part 201
 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels," dated December 30, 2013.
 EGLE Residential Volatilization to Indoor Air Pathway (VIAP) Screening Levels, dated September 4, 2020.
- Most rigorous of Ambient Air Criteria presented.
- 4. Groundwater Protection Criteria presented as Drinking Water/Ground Water Surface Water Interface (GSI)
- Chemical Abstract Service (CAS) Numbers are presented below chemicals as provided by EGLE.
- 6. "ID" = EGLE indicates inadequate data to develop criterion.
- 7. EGLE indicates that some chemical-specific GSI criteria are based upon the hardness of the receiving waters, and for the purpose of evaluating the potential need for remedial activities, EGLE allows an estimated hardness value of 150 mg/L to be used. Final determination of compliance with criteria must be based on site specific hardness.

 The estimated GSI value shown is not protective of surface water used as a drinking water source.
- 8. Boldface values exceed EGLE Statewide Default Background Levels or Facility-Specific Background Levels.
- 9. Values shown thus exceed Statewide Default and EGLE Generic Residential Groundwater Protection Criteria.
- 10. Values shown thus exceed Statewide Default and EGLE Generic Residential Direct Contact Criteria.
- 11. "NT" = not tested.
- 12. Distinctive testing would be required to determine the relative concentrarions of chromium III and VI. For the purposes of this table chromium VI comparative criteria are used.

Table 2 Summary of Detected SVOCs Chemistry Results (Soil)

TABLE 2 - SUMMARY OF PNAs CHEMISTRY RESULTS (Soil

Sample	Date	Description	Acenaphthene 83329	Acenaphthylene 208968	Anthracene 120127	Benzo(a)anthracene 56553	Benzo(a)pyrene 50328	Benzo(b)fluoranthene 205992
2a	40/00/0000	2'- 3'	<300	<300	1.100	2.800	0.500	3.300
2a 2a-D	12/22/2022	2 - 3 duplicate	<300	<300	700	2,800	2,500 2,000	3,600
2a-D 3a	12/22/2022 12/22/2022	2'- 3'	400	<300	1.600			
						3,900	3,300	6,200
5a	12/22/2022	0'- 1'	<300	<300	<300	700	700	1,100
	latilization to Indoor A	Air						
Pathway (VIAP) Scree	ening Leveis al Volatilization to Inde	oor Air	200,000	DATA	13,000,000	160,000	NA NA	NA NA
Pathway (VIAP) Scree			3,600,000	DATA	220,000,000	11,000,000	NA	NA
EGLE Generic Reside	ential							
Groundwater Protect			300,000/8,700	5,900/ID	41,000/ID	NLL/NLL	NLL/NLL	NLL/NLL
EGLE Generic Reside								
Indoor Air Inhalation			190,000,000	1,600,000	1,000,000,000	NLV	NLV	ID
EGLE Generic Non-R Indoor Air Inhalation			350,000,000	3.000.000	1.000.000.000	NLV	NLV	ID
EGLE Generic Reside			330,000,000	3,000,000	1,000,000,000	MEY	NLV	U U
Volatile Soil Inhalatio	on Criteria (VSIC)		81,000,000	2,200,000	1,400,000,000	NLV (ID)	1,500,000	ID
EGLE Generic Reside Particulate Soil Inhal			14.000.000.000	2,300,000,000	67,000,000,000	ID	1,500,000	ID
EGLE Generic Reside			. 1,000,000,000	2,000,000,000	21,222,223,223		,,,,,,,,	
Direct Contact Criteri	ia		41,000,000	1,600,000	230,000,000	20,000	2,000	20,000
EGLE Generic Non-R								
Direct Contact Criteri	ia		130,000,000	5,200,000	730,000,000	80,000	8,000	80,000
Sample	Date	Description	Benzo(g,h,i)perylene 191242	Benzo(k)fluoranthene 207089	Chrysene 218019	Dibenzo(a,h)anthracene 53703	Fluoranthene 206440	Fluorene 86737
			191242	207089	218019	53703	206440	86737
2a	12/22/2022	2'- 3'	191242 1,300	207089 3,700	218019 2,800	53703 <300	<u>206440</u> 6,100	86737
2a 2a-D	12/22/2022 12/22/2022	2'- 3' duplicate	191242 1,300 1,200	3,700 4,000	218019 2,800 2,200	53703 <300 500	6,100 4,500	86737 500 <300
2a 2a-D 3a	12/22/2022 12/22/2022 12/22/2022	2'- 3' duplicate 2'- 3'	191242 1,300 1,200 1,700	3,700 4,000 6,900	2,800 2,200 4,200	53703 <300 500 600	6,100 4,500 9,100	500 <300 500
2a 2a-D 3a 5a	12/22/2022 12/22/2022 12/22/2022 12/22/2022	2'- 3' duplicate 2'- 3' 0'- 1'	191242 1,300 1,200	3,700 4,000	218019 2,800 2,200	53703 <300 500	6,100 4,500	86737 500 <300
2a 2a-D 3a 5a	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022	2'- 3' duplicate 2'- 3' 0'- 1'	1,300 1,200 1,700 300	3,700 4,000 6,900 1,300	2,800 2,800 2,200 4,200 700	<300 500 600 <300	206440 6,100 4,500 9,100 1,300	500 <300 500 <300 500 <300
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scree	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 Idatilization to Indoor A	2'- 3' duplicate 2'- 3' 0'- 1'	191242 1,300 1,200 1,700	3,700 4,000 6,900	2,800 2,200 4,200	53703 <300 500 600	6,100 4,500 9,100	500 <300 500
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scree	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 latilization to Indoor A ening Levels al Volatilization to Indo	2'- 3' duplicate 2'- 3' 0'- 1'	1,300 1,200 1,700 300	3,700 4,000 6,900 1,300	2,800 2,800 2,200 4,200 700	53703 <300 500 600 <300	206440 6,100 4,500 9,100 1,300	500 <300 500 <300 500 <300
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residenti Pathway (VIAP) Scree EGLE Generic Reside	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 Idatilization to Indoor A ening Levels al Volatilization to Indo ening Levels	2'- 3' duplicate 2'- 3' 0'- 1'	1300 1200 1,700 300 NA	3,700 4,000 6,900 1,300 NA	218019 2,800 2,200 4,200 700 NA NA	= 53703 <300 500 600 <300 NA	206440 6,100 4,500 9,100 1,300 NA	86737 500 <300 500 <300 470,000
2a 2a-D 3a 5a 5a EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residentia Pathway (VIAP) Scree EGLE Generic Reside Groundwater Protect	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 idatilization to Indoor A ening Levels al Volatilization to Indo ening Levels ential	2'- 3' duplicate 2'- 3' 0'- 1'	1,300 1,200 1,700 300	3,700 4,000 6,900 1,300	2,800 2,200 4,200 700	= 53703 <300 500 600 <300	206440 6,100 4,500 9,100 1,300 NA	86737 500 <300 500 <300 470,000
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residentia Pathway (VIAP) Scree EGLE Generic Reside Groundwater Protect EGLE Generic Reside	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 Idatilization to Indoor A ening Levels al Volatilization to Inde ening Levels ential ion Criteria ential	2'- 3' duplicate 2'- 3' 0'- 1'	1302 1,200 1,700 300 NA NA NLL/NLL	207089 3,700 4,000 6,900 1,300 NA NA NLL/NLL	218019 2,800 2,200 4,200 700 NA NA NLL/NLL	53703 <300 500 600 <300 NA NA NLL/NLL	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500	86737 500 <300 500 <300 470,000 8,300,000 390,000/5,300
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residenti Pathway (VIAP) Scree EGLE Generic Reside Groundwater Protect EGLE Generic Residenti Indoor Alr Inhalation	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 idatilization to Indoor A ening Levels at Votatilization to Inde ening Levels ential ion Oriteria ential	2'- 3' duplicate 2'- 3' 0'- 1'	1300 1200 1,700 300 NA	3,700 4,000 6,900 1,300 NA	218019 2,800 2,200 4,200 700 NA NA	= 53703 <300 500 600 <300 NA	206440 6,100 4,500 9,100 1,300 NA	86737 500 <300 500 <300 470,000
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scre EGLE Non-Residenti Pathway (VIAP) Scre EGLE Generic Reside Groundwater Protect EGLE Generic Reside Indoor Air Inhalation EGLE Generic Non-R Indoor Air Inhalation	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 idatilization to Indoor A ening Levels al Volatilization to Indo ening Levels ential ion Criteria ential criteria	2'- 3' duplicate 2'- 3' 0'- 1'	1302 1,200 1,700 300 NA NA NLL/NLL	207089 3,700 4,000 6,900 1,300 NA NA NLL/NLL	218019 2,800 2,200 4,200 700 NA NA NLL/NLL	53703 <300 500 600 <300 NA NA NLL/NLL	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500	86737 500 <300 500 <300 470,000 8,300,000 390,000/5,300
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scre EGLE Generic Reside Groundwater Protect EGLE Generic Reside Indoor Air Inhalation EGLE Generic Non-R Indoor Air Inhalation EGLE Generic Non-R	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 13/2012 14EIIIIzation to Indeening Levels 10 Corteria 10 Criteria	2'- 3' duplicate 2'- 3' 0'- 1'	1302 1,200 1,700 300 NA NA NLI/NLL NLV NLV	207089 3,700 4,000 6,900 1,300 NA NA NLI/NLL NLV NLV	218019 2,800 2,200 4,200 700 NA NA NLL/NLL ID	S3703 <300 500 600 <300 NA NA NLIVILL NLV NLV	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500 1,000,000,000	86737 500 <300 500 500 470,000 8,300,000 390,000/5,300 580,000,000 1,000,000,000
2a 2a-D 3a 5a 5a EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residential Pathway (VIAP) Scree EGLE Generic Residential Groundwater Protect EGLE Generic Residential Indoor Alt Inhalation EGLE Generic Non-R Indoor Alt Inhalation EGLE Generic Residential EGLE Generic Residential EGLE Generic Residential EGLE Generic Residential	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 13/2014/10/10/10/10/10/10/10/10/10/10/10/10/10/	2'- 3' duplicate 2'- 3' 0'- 1'	191242 1,300 1,200 1,700 300 NA NA NLIVILL	3,700 4,000 6,900 1,300 NA NA NLL/NLL	218019 2,800 2,200 4,200 700 NA NA NLL/NLL ID	\$3703 \$300 \$500 \$600 \$300 NA NA NLI/NLL	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500 1,000,000,000	86737 500 <300 500 470,000 8,300,000 390,000/5,300 580,000,000
2a 2a-D 3a 5a EGLE Residential Vo Pathway (VIAP) Scre EGLE Generic Reside Groundwater Protect EGLE Generic Reside Indoor Air Inhalation EGLE Generic Non-R Indoor Air Inhalation EGLE Generic Non-R	12/22/2022 12/22/2022	2'- 3' duplicate 2'- 3' 0'- 1'	1302 1,200 1,700 300 NA NA NLI/NLL NLV NLV	207089 3,700 4,000 6,900 1,300 NA NA NLI/NLL NLV NLV	218019 2,800 2,200 4,200 700 NA NA NLL/NLL ID	S3703 <300 500 600 <300 NA NA NLIVILL NLV NLV	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500 1,000,000,000	86737 500 <300 500 500 470,000 8,300,000 390,000/5,300 580,000,000 1,000,000,000
2a 2a-D 3a Sa EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residentii Pathway (VIAP) Scree EGLE Generic Reside Groundwater Protect EGLE Generic Reside Indoor Air Inhalation EGLE Generic Non-R Indoor Air Inhalation EGLE Generic Reside Volatile Soil Inhalatic EGLE Generic Reside Particulate Soil Inhala EGLE Generic Reside	12/22/2022 12/22/202 12/22/2022 1	2'- 3' duplicate 2'- 3' 0'- 1'	191242 1.300 1.200 1.700 300 NA NA NLI/NLL NLV NLV NLV 800,000,000	207089 3,700 4,000 6,900 1,300 NA NA NLI/NLL NLV NLV NLV NLV NLV	218019 2,800 2,200 4,200 700 NA NA NLL/NLL ID ID ID	S3703	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500 1,000,000,000 740,000,000 740,000,000	86737 500 -300 500 500 470,000 8,300,000 390,000/5,300 580,000,000 1,000,000,000 130,000,000
2a 2a-D 3a 5a 5a EGLE Residential Vo Pathway (VIAP) Scre EGLE Non-Residential Pathway (VIAP) Scre EGLE Generic Reside Groundwater Protect EGLE Generic Reside Indoor Alt Inhalation EGLE Generic Non-R Indoor Alt Inhalation EGLE Generic Reside Volatile Soil Inhalatic EGLE Generic Reside FEGLE Generic Reside Volatile Soil Inhalatic EGLE Generic Reside Direct Cortact Criteri	12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/22/2022 12/12/2022 12/12/2022 12/12/2022 12/12/2022 12/12/2022 13/12/2022	2'- 3' duplicate 2'- 3' 0'- 1'	191242 1.300 1.200 1.700 300 NA NA NLI/NLL NLV NLV	207089 3,700 4,000 6,900 1,300 NA NA NLI/NLL NLV NLV	218019 2,800 2,200 4,200 700 NA NA NLL/NLL ID ID	S3703 <300 500 600 <300 NA NA NLIV NLV NLV	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500 1,000,000,000 740,000,000	86737 500 -300 500 500 470,000 8,300,000 390,000/5,300 580,000,000 1,000,000,000
2a 2a-D 3a Sa EGLE Residential Vo Pathway (VIAP) Scree EGLE Non-Residentii Pathway (VIAP) Scree EGLE Generic Reside Groundwater Protect EGLE Generic Reside Indoor Air Inhalation EGLE Generic Non-R Indoor Air Inhalation EGLE Generic Reside Volatile Soil Inhalatic EGLE Generic Reside Particulate Soil Inhala EGLE Generic Reside	12/22/2022 12/22/202 12/22/2022 1	2'- 3' duplicate 2'- 3' 0'- 1'	191242 1.300 1.200 1.700 300 NA NA NLI/NLL NLV NLV NLV 800,000,000	207089 3,700 4,000 6,900 1,300 NA NA NLI/NLL NLV NLV NLV NLV NLV	218019 2,800 2,200 4,200 700 NA NA NLL/NLL ID ID ID	S3703	206440 6,100 4,500 9,100 1,300 NA NA 730,000/5,500 1,000,000,000 740,000,000 740,000,000	86737 500 -300 500 500 470,000 8,300,000 390,000/5,300 580,000,000 1,000,000,000 130,000,000

Sample	Date	Description	Indeno(1,2,3-cd)pyrene 193395	2-Methylnaphthalene 91576	Naphthalene 91203	Phenanthrene 85018	Pyrene 129000
2a	12/22/2022	2'- 3'	1,300	<300	<300	4,200	4,900
2a-D	12/22/2022	duplicate	1,100	<300	<300	2,600	3,800
3a	12/22/2022	2'- 3'	1,700	<300	<300	5,800	7,400
5a	12/22/2022	0'- 1'	300	<300	<300	700	1,100
EGLE Residential Vol	atilization to Indoor A	Air					
Pathway (VIAP) Scree			NA	1,700	67	1,700	25,000,000
EGLE Non-Residentia		oor Air					
Pathway (VIAP) Scree			NA	30,000	1,900	29,000	440,000,000
EGLE Generic Reside Groundwater Protecti			NLL/NLL	57.000/4.200	35.000/730	56.000/2.100	480.000/ID
EGLE Generic Reside				21,000,000			,
Indoor Air Inhalation (Criteria		NLV	2,700,000	250,000	2,800,000	1,000,000,000
EGLE Generic Non-Re			NLV	4,900,000	470,000	5,100,000	1,000,000,000
EGLE Generic Reside	ntial				-		
Volatile Soil Inhalation			NLV (ID)	1,500,000	300,000	160,000	650,000,000
EGLE Generic Reside							
Particulate Soil Inhala			ID	670,000,000	200,000,000	6,700,000	6,700,000,000
EGLE Generic Reside Direct Contact Criteria			20.000	8.100.000	16.000.000	1,600,000	29.000.000
EGLE Generic Non-Re			20,000	5,155,000	.0,000,000	1,000,000	25,550,000
Direct Contact Criteria			80,000	26,000,000	52,000,000	5,200,000	84,000,000

- Notes:

 1. All values expressed in µg/kg
 2. Michigan Department of Environment, Great Lakes, and Energy (EGLE) Generic Criteria from Table 2. Soil: Residential, and Table 3. Soil: Nonresidential. Part 201
 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels," dated December 30, 2013. EGLE VIAP Screening Levels dated September 4, 2020.
 3. Most rigorous of Ambient Air Criteria presented.
 4. Groundwater Protection Criteria presented as Drinking Water/Ground Water Surface Water Interface (GSI)
 5. Chemical Abstract Service (CAS) Numbers are presented below chemicals as provided by EGLE.
 6. 110" = EGLE indicates not Rickly to leach.
 7. **NL" = EGLE indicates not Rickly to volatilize.
 9. Boldfaced values exceed EGLE Generic Residential Groundwater Protection Criteria.
 10. Values shown thus exceed EGLE Generic Residential Indoor Air Inhalation Criteri
 11. Values shown thus exceed EGLE Generic Residential Ambient Air Inhalation Criteria.
 12. Values onwn thus
 13. **** = Value exceeds multiple EGLE Generic Residential Criteria.

Table 3 Summary of Detected VOCs Chemistry Results (Soil)

TABLE 3 - SUMMARY OF DETECTED VOLATILE ORGANICS CHEMISTRY RESULTS (Soil)

Sample	Date	Description	p-Isopropyltoluene	2-Methylnaphthalene 91576	Naphthalene 91203	Toluene 108883	Trichloroethene 79016	Xylenes 1330207
3a 3b	12/22/2022 12/22/2022	2'- 3' 5'- 6'	100 100	200 <100	300 <300	200 <60	<60 <60	170 <160
EGLE Residential Volati Pathway (VIAP) Screeni	lization to Indoor Air ng Levels		NC	1,700	67	3,700	0.33	280
EGLE Non-Residential \ Pathway (VIAP) Screeni		Air	NC	30,000	1,900	64,000	4.0	5,000
EGLE Generic Resident Groundwater Protection	Criteria		NC	57,000/4,200	35,000/730	16,000/5,400	100/4,000	5,600/820
EGLE Generic Non-Resi Groundwater Protection			NC	170,000/4,200	100,000/730	16,000/5,400	100/4,000	5,600/820
EGLE Generic Resident Indoor Air Inhalation Cr	iteria		NC	2,700,000	250,000	330,000	1,000	6,300,000
EGLE Generic Non-Resi Indoor Air Inhalation Cr	iteria		NC	4,900,000	470,000	610,000	1,900	12,000,000
EGLE Generic Resident Volatile Soil Inhalation (Criteria (VSIC)		NC	1,500,000	300,000	2,800,000	11,000	46,000,000
EGLE Generic Non-Resi Volatile Soil Inhalation (Criteria (VSIC)		NC	1,800,000	350,000	3,300,000	14,000	54,000,000
EGLE Generic Resident Particulate Soil Inhalation	on Criteria		NC	670,000,000	200,000,000	27,000,000,000	130,000,000	290,000,000,000
EGLE Generic Non-Resi Particulate Soil Inhalation	on Criteria		NC	290,000,000	88,000,000	12,000,000,000	59,000,000	1.3E+11
EGLE Generic Resident Direct Contact Criteria			NC	8,100,000	16,000,000	50,000,000	110,000	410,000,000
EGLE Generic Non-Resi Direct Contact Criteria	dential		NC	26,000,000	52,000,000	160,000,000	660,000	1,000,000,000

NOTES:

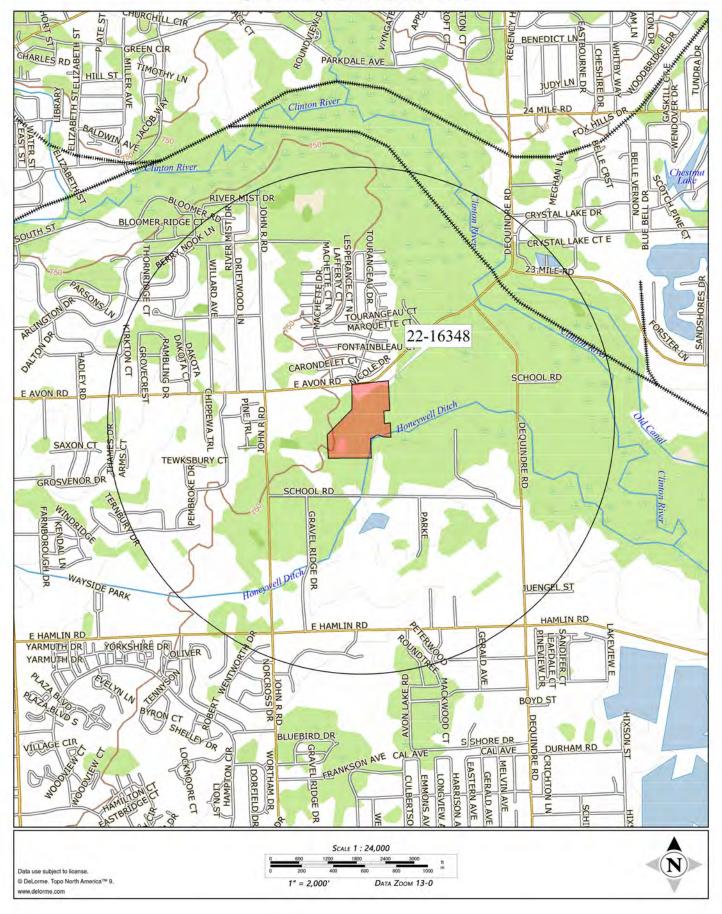
- 1. All values expressed in µg/kg
- 1. Aurorites expressed in Japans
 2. Michigan Department of Environment, Great Lakes, and Energy (EGLE) Generic Criteria from Table 2. Soil: Residential, and Table 3. Soil: Nonresidential. Part 201
 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels," dated December 30, 2013. EGLE VIAP Screening Levels dated September 4, 2020.
- 3. Most rigorous of Ambient Air Criteria presented.
- Groundwater Protection Criteria presented as Drinking Water/Ground Water Surface Water Interface (GSI)
- 5. Chemical Abstract Service (CAS) Numbers are presented below chemicals as provided by EGLE.
- 6. Boldfaced values exceed EGLE Generic Residential Drinking Water Groundwater Protection Criteria.
- 7. Values shown thus exceed EGLE Generic Residential GSI Groundwater Protection Criteria
- 8. Values shown thus exceed EGLE Generic Residential Direct Contact Criteria.
- 9. Values shown thus exceed EGLE Residential VIAP Screening Levels.
- 10. NC- no published criteria or screening levels.

Table 4 Summary of Pesticides and PCBs Chemistry Results (Soil)

TABLE 4 - SUMMARY OF PESTICIDES AND PCBs CHEMISTRY RESULTS (Soil)

Sample	Date	Description	4,4-DDD 72548	4,4-DDE 72559	4,4-DDT 50293	Chlordane 57749	Endosulfans 115297	Polychlorinated Biphenyls 1336363
3a	12/22/2022	2'- 3'	NT	NT	NT	NT	NT	<300
4a 5a	12/22/2022 12/22/2022	1'- 2' 0'- 1'	<20 20	120 20	80 30	<100 <100	<20 <20	NT 400
EGLE Residential Pathway (VIAP) S	Volatilization to Indo creening Levels	or Air	NA	39,000	NA	13,000	TX	DATA
EGLE Generic Re Groundwater Pro			NLL/NLL	NLL/NLL	NLL/NLL	NLL/NLL	NLL/NLL	NLL/NLL
Indoor Air Inhalat	EGLE Generic Residential Indoor Air Inhalation Criteria			NLV	NLV	11,000,000	ID	3,000,000
EGLE Generic Re Ambient Air Inhal	ation Criteria		44,000,000	32,000,000	32,000,000	31,000,000	ID	240,000
EGLE Generic Re Direct Contact Cr		<u> </u>	95,000	45,000	57,000	31,000	1,400,000	4,000

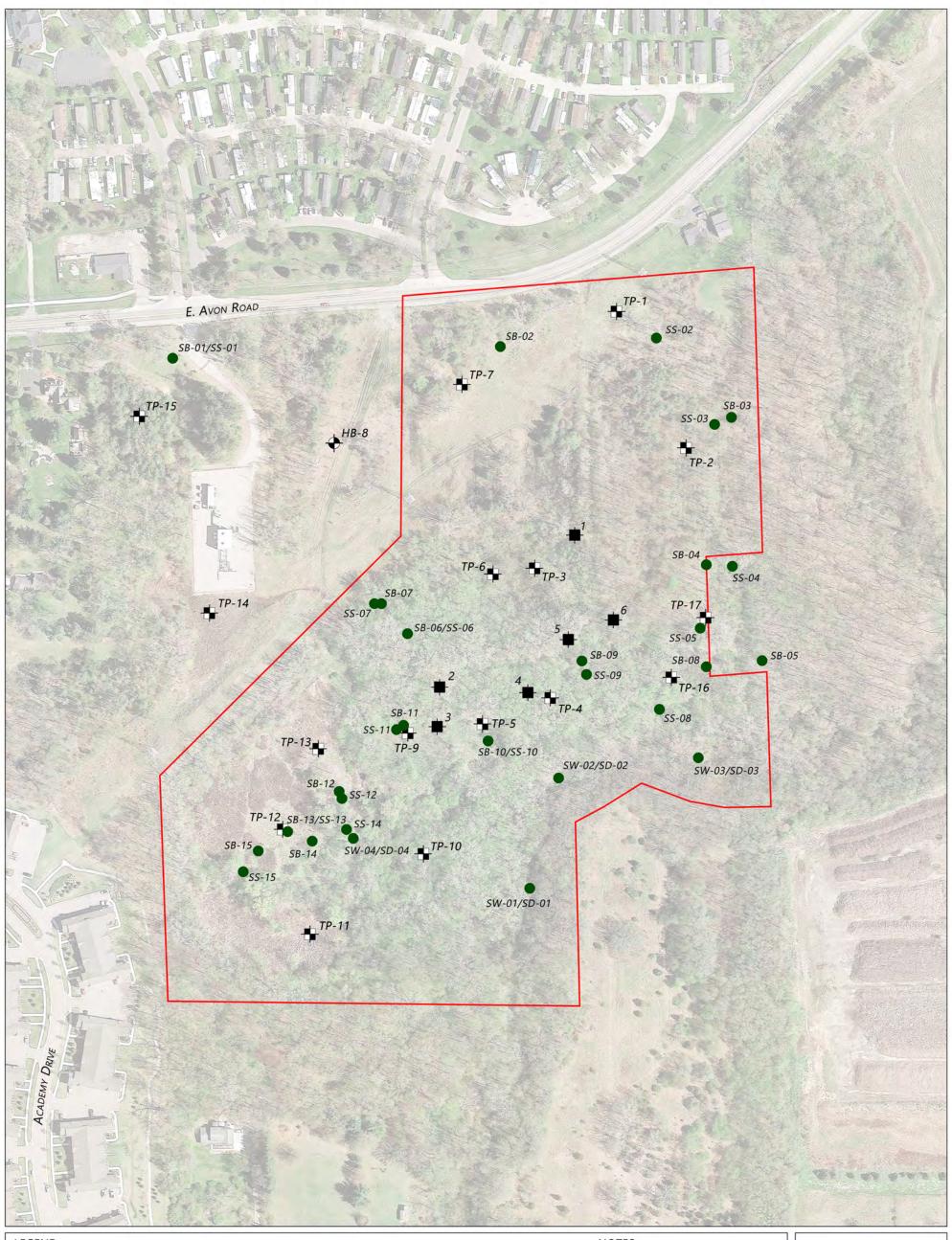
NOTES:


- 1. All values expressed in µg/kg
- 2. Michigan Department of Environment, Great Lakes, and Energy (EGLE) Generic Criteria from Table 2. Soil: Residential, and Table 3. Soil: Nonresidential. Part 201 Generic Cleanup Criteria and Screening Levels/Part 213 Risk-Based Screening Levels," dated December 30, 2013.
- 3. Most rigorous of Ambient Air Criteria presented.
- 4. Groundwater Protection Criteria presented as Drinking Water/Ground Water Surface Water Interface (GSI)
- 5. Chemical Abstract Service (CAS) Numbers are presented below chemicals as provided by EGLE.
- 6. "NLL" = EGLE indicates not likely to leach.
- 7. "NLV" = EGLE indicates not likely to volatilize.
- 8. Boldfaced values exceed EGLE Generic Residential Drinking Water Groundwater Protection Criteria.
- 9. Values shown thus exceed EGLE Generic Residential Ambient Air Inhalation Criteria.
- 10. TX- EGLE indicates an inhalation toxicity value has not been identifed.
- 11. DATA- EGLE indicates insufficient chemical parameters have been identified to allow development of a VIAP Screening Level. If detections are identified, health-based soil vapor should be used to evaluate risk.

Attachment I Site Location Map

JOB NUMBER: 22-16348

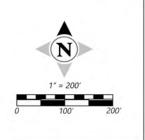
SITE LOCATION MAP



Attachment II

Test Pit, Soil Boring, and Sample Location Map

Soil Boring, Test Pit and Sample Location Map



<u>LEGEND</u>

- # TEST PIT (M&A 2022)
- SOIL BORING (M&A 04-142)
- TEST PIT (M&A 04-142)
- SOIL BORING/SOIL, WATER OR SEDIMENT SAMPLE (2011 BY OTHERS)
 - APPROXIMATE PROPERTY BOUNDARY

NOTES:

- 2022 AERIAL PHOTOGRAPH
- ALL LOCATIONS APPROXIMATE

Attachment III

Log of Test Pit Sheets

JOB

McDOWELL & ASSOCIATES

Geotechnical, Environmental, & Hydrogeologic Services 21355 Hatcher Avenue • Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

Test Pit Log

PROJECT

Environmental Site Assessment

NO.	22-16348	LO

1406 Avon Road CATION

TEST PIT NO. _____1 DATE -Rochester Hills, Oakland County, Michigan

12/22/22

DEPTH	SOIL SOIL DESCRIPTION	PID
0'6"		
1'0"	Moist dark brown sandy TOPSOIL	ND
1'6"	,	
2'0"		
2'6"		
3'0"	Moist brown silty SAND with pebbles	ND
3'6"		
4'0"	4'0"	
4'6"	Moist light brown medium to coarse SAND with pebbles	
5'0"	5'0"	ND
5'6"		1.0
6'0"		
6'6"		
7'0"		
7'6"		
8'0"		
8'6"		
9'0"		
9'6"		
10'0"		
10'6"	Notes:	
11'0"	PID Readings from MiniRAE 3000 photoionization detector as parts per million (ppm, calibrated to	
11'6"	isobutylene).	
12'0"	ND = None Detected	
12'6"		
13'0"		

McDOWELL & ASSOCIATES

Geotechnical, Environmental, & Hydrogeologic Services 21355 Hatcher Avenue • Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

Test Pit Log

1406 Avon Road

	\neg	1	_	\neg T
\mathbf{r}	71	"	_(
	PI	PRC	PRO.I	PROJEC

Environmental Site Assessment

JOB NO. 22-16348

LOCATION

TEST PIT NO. _ Rochester Hills, Oakland County, Michigan **DEPTH** SOIL SOIL DESCRIPTION PID 0'6" Moist dark brown sandy TOPSOIL, fill 0'6" 1'0" ND 1'6" 2'0" 2'6" ND Moist brown to dark brown SAND with glass, metal, ceramic, brick and concrete, fill 3'0" 3'6" ND 4'0" 4'6" 5'0" 5'0" 5'6" Moist brown silty SAND ND 6'0" 6'0" 6'6" Moist brown clayey SAND ND 7'0" 7'0" 7'6" 8'0" 8'6" 9'0" 9'6" 10'0" 10'6" Notes: PID Readings from MiniRAE 3000 photoionization 11'0" detector as parts per million (ppm, calibrated to isobutylene). 11'6" ND = None Detected 12'0" 12'6" 13'0"

McDOWELL & ASSOCIATES

Geotechnical, Environmental, & Hydrogeologic Services 21355 Hatcher Avenue • Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

Test Pit Log

PROJECT

12/22/22

Environmental Site Assessment

JOB NO. ____22-16348 LOCATION

Rochester Hills, Oakland County, Michigan

1406 Avon Road

	TEST PIT NO	DATE Roche	ster Hills, Oakland County, Michig
DEPTH	SOIL	SOIL DESCRIPTION	PID
0'6"			
1'0"			
1'6"			
2'0"			ND
2'6"			
3'0"		Moist brown to dark brown SAND with metal, slag, tire, brick, glass, c concrete and bottles, fill	organics,
3'6"			
4'0"			ND
4'6"			
5'0"			
5'6"			
6'0"	6'0"		ND
6'6"		Moist brown silty SAND	
7'0"	7'0"		ND
7'6"			
8'0"			
8'6"			
9'0"			
9'6"			
10'0"			
10'6"		Notes:	
11'0"		PID Readings from MiniRAE 3000 photoionization	
11'6"		detector as parts per million (ppm, calibrated to isobutylene).	
12'0"		ND = None Detected	
12'6"			
13'0"			

M

McDOWELL & ASSOCIATES

Geotechnical, Environmental, & Hydrogeologic Services 21355 Hatcher Avenue • Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

Test Pit Log

PROJECT

Environmental Site Assessment

JOB NO	22-16348			LOCATION	1406 Avon Road
TEST PIT NO.	4	— DATE -	12/22/22		Rochester Hills, Oakland County, Michigan

DEPTH	SOIL	SOIL DESCRIPTION	PID
0'6"		Moist dark brown sandy TOPSOIL, fill 0'6"	
1'0"			ND
1'6"		Moist brown to dark brown sandy TOPSOIL with wood and trace of ceramic pieces, fill	
2'0"	000000000	2'0"	
2'6"			
3'0"			ND
3'6"			
4'0"		Moist dark brown SAND with metal, glass, ceramic and wood, fill	
4'6"			
5'0"			ND
5'6"		5'6"	
6'0"		Moist brown silty SAND	ND
6'6"		6'6"	
7'0"			
7'6"			
8'0"			
8'6"			
9'0"			
9'6"			
10'0"			
10'6"		Notes:	
11'0"		PID Readings from MiniRAE 3000 photoionization	
11'6"		detector as parts per million (ppm, calibrated to isobutylene).	
12'0"		ND = None Detected	
12'6"			
13'0"			

McDOWELL & ASSOCIATES

Geotechnical, Environmental, & Hydrogeologic Services 21355 Hatcher Avenue • Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

Test Pit Log

1406 Avon Road

PROJECT

Environmental Site Assessment

JOB NO. ____22-16348 LOCATION

Rochester Hills, Oakland County, Michigan

	TEST PIT NO.	5 DATE Roch	ester Hills, Oakland County, Michig
DEPTH	SOIL	SOIL DESCRIPTION	PID
0'6"		A. V. dan J. C. Trans. St. Company and T. C. Com	
1'0"	1'0"	Moist dark brown clayey sandy TOPSOIL with trace of brick, fill	ND
1'6"	10	Moist brown to dark brown clayey SAND with topsoil and wood, fill	
2'0"	2'0"	most storm to dark storm dayby of the with topson and wood, in	
2'6"			ND
3'0"		Moist brown silty SAND, fill	
3'6"	3'6"		ND
4'0"			
4'6"		Moist brown to dark brown clayey SAND with trace of concrete and I	
5'0"			ND
5'6"	5'6"		
6'0"			
6'6"		Moist brown silty fine SAND	ND
7'0"	7'0"		
7'6"			-
8'0"			-
8'6"	/		
9'0"			
9'6"			-
10'0"			1
10'6"		lotes:	
11'0"	d	ID Readings from MiniRAE 3000 photoionization etector as parts per million (ppm, calibrated to sobutylene).	
11'6" 12'0"		ID = None Detected	
12'6"			
13'0"			

McDOWELL & ASSOCIATES
Geotechnical, Environmental, & Hydrogeologic Services
21355 Hatcher Avenue • Ferndale, MI 48220
Phone: (248) 399-2066 • Fax: (248) 399-2157

Test Pit Log

PROJECT	Environmental Site Assessment	
LOCATION	1406 Avon Road	

JOB NO	22-16348		LOCATION	1406 Avon Road	
TEST PIT NO.	6	— DATE	12/22/22	Rochester Hills, Oakland County, Michigan	
				THE PERSON NAMED OF THE PE	

DEPTH	SOIL	SOIL DESCRIPTION	PID
0'6"		Moist dark brown sandy TOPSOIL with trace of brick, fill 0'6"	
1'0"			ND
1'6"		Moist brown clayey SAND with gravel and brick, fill	
2'0"			
2'6"		2'6"	
3'0"		Moist dark brown sandy TOPSOIL	ND
3'6"			
4'0"		Moist brown silty fine SAND	
4'6"			
5′0"	5	5'O"	ND
5'6"			
6'0"			
6'6"			
7'0"			
7'6"			
8'0"			
8'6"			
9'0"			
9'6"			
10'0"			
10'6"		Notes:	
11'0"		PID Readings from MiniRAE 3000 photoionization detector as parts per million (ppm, calibrated to	
11'6"		isobutylene).	
12'0"		ND = None Detected	
12'6"			
13'0"			

* 1	7

McDOWELL & ASSOCIATES
Georechnical, Environmental, & Hydrogeologic Services
21355 Hatcher Avenue • Ferndele, MI 48220
Phone: (248) 399-2066 • Fax: (248) 399-2157

TP-1 LOG OF TEST PIT NO. PROJECT Highland Park Site

LOCATION Avon and John R Roads

		JOB	NO 04-	-142	L	OCATI	ON_Avon	and Johi	R Roads	3	
	SURFACE ELEV. DATE 4-02-04			Rochester Hills, Michigan							
Sample & Type	Depth	Legend		SOIL DESCRIPTION		enetration love for 6°	Maisture %	Natural Wt. P.C.F.	Dry Den WL P.C.F.	Lina. Comp., Strengin PSF.	Str.
	1		Mada	et dark brown silty sandy TOPSOIL,							
-	+		MOIS VEC	ETATION & ROOTS, fill							
	2		2'0" Mois	st brown silly CLAY							
	3		2'6"								
]	Wet occ	brown silly fine SAND with pebbles and asional stones							
\vdash	4		4'0°	•							
	5										
\vdash	6	-	Wet	brown fine to medium SAND with gravel							
	7		7'3"			-		 -			
	8		Wet	gray fine to medium SAND with gravel							
	9	<u> </u>	8'4"							<u> </u>	
		_									
	10	-				-		 	-	<u> </u>	┼
	11]									
	12	-				<u> </u>					-
	1,2	3									
	13]				-			ļ		₩-
	14	<u> </u>					-				
\vdash	15	4				<u> </u>					
	15	-						·			
	16]									—
	17	-	!				-				
	4.0	7				<u> </u>	 				-
-	18	1									
	19]				ļ	ļ				Ι
	20	1									
	21]		•							
		1								`	
	22		ł							ļ	
	23	1	1								
]	1								
	24	_									
	25	-						-			1
77	PE OF SAMP		REMARKS:			1	J. GI	ROUND WAT	ER OBSER	/ATIONS	<u> 1</u>
U.	- DISTUR L UNDIST	LINER				G.W.	ENCOUNTE	RED AT	2	FT. B	INS.
5.	t Shelby S Split 8 C. • Rock (PODN	Slan Jan	rd Penetration Test - Driving 2" OD Sampler 1' With		G.W.	ENCOUNTE AFTER CON AFTER	AFLÉTION	4 HRS. 3	FT. 10 FT. 0	
) · PENET		Siandai 1407	# Hammer Falling 30,: Const Made at 9, luterkala			VOLUMES			0	

		M¢Ţ
		Geole
Y		21355
	. W	Phone

DOWELL & ASSOCIATES ' schnical, Environmental. & Hydrogeologic Services 5 Hatcher Avenue • Ferndale, MI 48220 ie: (248) 399-2066 • Frx: (248) 399-2157

LOG OF TEST PIT NO.

TP-2

JOB NO.

PROJECT Highland Park Site LOCATION_Avon and John R Roads

Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Dry Dan Wt. P.C.F. Unc. Damp. Strangth PSF. Natural WL P.C.F. Penekation Samula Str. SOIL DESCRIPTION Depth & Type Blows for 6° Moist dark brown slity sandy TOPSOIL 1 1'0" 2 3 Moist to wet brown silty fine to medium SAND with gravel 4 \$ 6.0. 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Note: Adjacent excavation (tree planting hole) had 20 water level at 1'6" below existing ground surface, 21 23 24 25 TYPE OF SAMPLE

D.- - DISTURBED

U.L - UNDIST, LINER

S.T. - SHELBY TUBE

S.S. - SPLIT SPOON

R.G. - ROCK CORE

() - PENETROMETER REMARKS: **GROUND WATER OBSERVATIONS** G.W. ENCOUNTERED AT 3 FT. O INS. G.W. ENCOUNTERED AT
G.W. ENCOUNTERED AT
G.W. AFTER COMPLETION
3
G.W. AFTER
HRS.
G.W. VOLUMES heavy Give in @ 2'-INS. INS. INS. 0 Standard Penetration Test • Driving 2" OD Sampler 1" With 140# Hammer Falling 30": Count Made at 6" Intervals

McDOWBLL & ASSOCIATES Gentechmical, Environmental, & Hydrogeologic Service 1355 Halcher Avenue • Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT	NO.	TP-3	
PROJECT _	Highland	t Park Site	
LOCATION	Avon an	d John R R	pads

		JOB	NO84-142	LC	CATIC	ON_Avon	and Johr	R Roads		
	SURFACE ELEV DATE _4-02-04				Rochester Hills, Michigan					
Sample & Type	Depin	Legend	SOIL DESCRIPTION	Peni Blov	etration etration	enutalone 84	Natural WL P.C.F.	Dry Den W _L P.C.F.	Uns. Comp. Strength PSF.	Str.
				dy _				_		
	1			-						
 	2	-	14"							
				-						
	3	-	Moist to wet brown silty fine to medic	IM SAND						 -
\vdash	4	┪	with gravel							
]	·	-						<u> </u>
\vdash	5			}			,			
	6_		6'0"							
	<u> </u>		1							 - -
\vdash	7	4		-					,	
\vdash	А	1		\ <u>-</u>						
]		[.						
	9	4				<u> </u>	·			
	10		\ .	ţ						
	-]		}						
-	11	4	•			 	 	<u> </u>		-
	12	1		ţ				<u> </u>		
	- 40	<u> </u>						 		├
\vdash	13	-		}				 	-	
	14		Ì	1						
-	<u> </u>	_						ļ -		
\vdash	15	-		,	•	<u> </u>	<u> </u>			
	16									
	1	_		}			 	 -		╁
	17	-		}				<u> </u>		1
	18									
<u> </u>	1 40	⊣ :					-	 	 	1
\vdash	19	⊣ "		·		-	 		 	
	20	コ								
<u> </u>	21	-				 	 	 	-	+-
		1								
	22	4				ļ				
 	23	-					 	 	 	1-
-	 	\exists								
	24	\exists					ļ <u>-</u>			4
-	25					 		 	├	
										1
Ĭ	YPE OF SAM	PLE	REMARKS:			G	ROUND WA	TER OBSER	VATIONS	
S S) DISTU J.L UNDIS S.T SHELE LS SPLIT LC ROCK) - PENE	Bytube Spoon Core	Stendard Penetration Test - Driving 2" OD Sampl 140# Harrangr Falting 30": Count Made at 6" Int	er 1° Wilh ervels	G.W. G,W, G.W.	ENCOUNTE ENCOUNTE AFTER CON AFTER VOLUMES	REDAT APLETION 5 H	2 RS. 2 ave in @ 2'±		INS. INS. INS.

	McDOWE Geotechnical, 21355 Halche
m , m	Phone: (248)

33.

LL & ASSOCIATES Environmental, & Hydrogeologic Services er Avenue • Ferndale, MI 48220 399-2066 - Fax: (248) 399-2157

TP-4 LOG OF TEST PIT NO.

PROJECT _Highland Park Site

LOCATION Avon and John R Roads

JOB NO. Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Natural WL P.C.F. Unc, Camp. . Strength PSF. Peneuration Dry Den Molssure **8**5, Dapth SOIL DESCRIPTION Blows for 6" Wt. P.C.F. Moist brown and dark brown fine sandy TOPSOIL & VEGETATION, fill 2 STUMPS, TREE LIMBS and moist brown oxidized silty SANO, fill 2'8" 3 Moist oxidized fine SAND mixed with broken 4 glass, fill 5 5'0" 6 Wet brown silty fine SAND 7 8 8'0" Wet gray sandy SILT 9 9'6" 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 REMARKS: TYPE OF SAMPLE D. DISTURBED
U.L. UNDIST, LINER
S.T. SHELBY TUGE
S.S. - SPLIT SPOON G.W. ENCOUNTERED AT G.W. ENCOUNTERED AT INS. INS. INS. G.W. AFTER COMPLETION 5
G.W. AFTER HRS,
G.W. VOLUMES heavy cave in @ 5'4 R.C. - ROCK CORE

() - PENETROMETER Slandard Peneiration Test - Driving 2" OD Sampler 1' With 140# Hammer Falling 30"; Count Made at 6" Intervals INS.

McDOWELL & ASSOCIATES Geotechnical, Environmental, & Hydrogeologic Services 21355 Harcher Avenue • Ferndale, Mt 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT NO.

TP-5

PROJECT Highland Park Site

LOCATION_Avon and John R Roads

04-142 JOB NO. ____ Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Penetration Moiswre Line, Comp. Str. Legend SOIL DESCRIPTION Depth Blows for 6° WLP.C.F. WLP.C.F. Strength PSF. Moist brown oxidized sandy silty clayey TOPSOIL 1'0" 2 3 STUMPS, TREE LIMBS (8" to 12" diameter 4 5' to 6' In length) oxidized clayey silty SAND . & BROKEN CONCRETE, fill 5 ß В 8'0" Wet gray sandy SILT mixed with decomposed wood, fill 9 10 Wet decomposed WOOD, fill 11 12 12'0" Wet gray clayey SILT (P.P. = 1,000 psf) 13 13'0" 14 15 16 17 18 19 Note: Stumps as large as 6' to 7' long, 18" to 24" 20 diameter. 21 22 23 24 25 REMARKS; TYPE OF SAMPLE GROUND WATER OBSERVATIONS D. - DISTURBED U.L. - UNDIST, LINER S.T. - SHELBY TUBE G.W. ENCOUNTERED AT G.W. ENCOUNTERED AT INS. INS. INS. INS. S.S. - SPLIY SPOON R.C. - ROCK CORE () - PENETROMETER G.W. AFTER COMPLETION B
G.W. AFTER HRS.
G.W. VOLUMES heavy cave in @ 2'+ Standard Penetration Test - Orlving 2" OD Sampler 1" With 140# Mammer Failing 30": Count Made at 6" Intervals

McDOWELL & ASSOCIATES Geotechnical, Environmental, & Wydongeologic Services 21355 Hatcher Avenue = Ferndalc, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

TP-6 LOG OF TEST PIT NO. PROJECT Highland Park Site

LOCATION Avon and John R Roads JOB NO. 04-142

			SURI	FACE ELE	V	DATE <u>4-02-04</u>		Roci	rester Hill			
Sample & Type		Dep(h	Legend		SOIL DESCRIPTION		Penetration Blows for 6"	Molstura %	Natural Wt. P.C.F.	Dry Don Wt. P.C.F.	Unic. Comp. Strength PSF.	Str.
			33333		Moist dark brown and black	silty fine sandy						
<u> </u>	Н	1			TOPSOIL & VEGETATION,	All .			<u> </u>	<u> </u>	<u> </u>	
ļ	Н	2		1'6"								
					Moist to wet brown fine SAN	D with occasional						
	Ц	3			pebbles and bottles, fill			ļ			ļ	ļ
-	Н	4		3'6"	•			_	 			-
	H	-			Wet brown fine to medium S	AND with pravel	-		-			
		5			THE DIGITAL HIS IS THE SECOND	AND WILL SIGNO.						
<u> </u>	L		<u> </u>	5'5"			-	 			ļ	├ ──
	۲	<u>.</u>	1				<u> </u>					
	Γ	7]					İ				
	L	<u> </u>								 		
	H	8	-	İ					 			
		9	1						· ·			
	Γ											
-	┞	10	-	l '					 	-	<u> </u>	-
	t	11	1					 	 		<u> </u>	
]									
	┡	12		ļ ·					<u> </u>	 		
-	+	13	1					-	 	 		\vdash
		,,,	1									
	-	14	4		•		ļ		ļ			
 	H	15	┨					-			 	
-	T		1									
	L	16]	1								
	┝	17	-					 		<u></u>		
	\vdash		1					 				
	Γ	18	1									
	┝	19	-		•			ļ	 	ļ		
-	┝	19	┨				 	 -	 			1
		20	<u> </u>									
_	F	21]						<u> </u>	ļ		ļ.,
 	┢		1					 	 -	-	ļ	
		22	<u> </u>	1				İ	i .			
_	L	20	-									
	┝	23	1				-					
	L	24	1									
	L		1								1	
-	┝	25	4				ļ				-	
		OF SAMPL		REMARKS				ام ما	באש מעווחפ	TER OBSERV	/ATIONS	
D U S	Д. Л.	- DISTURI - UNDIST. - SHELBY	BEO LINER TUBE				G.W.	ENCOUNTE ENCOUNTE	RED AT	1	FT. 10 FT.	INS. INS.
S.	S. C.	- SPLITS - ROCK C - PENETT	POON KORÉ		Slandard Penetration Test - Driving 2" (140# Hammer Falling 30": Count Mac	DD Sampler 1' With le at 5" Intervals	G.W.	AFTER CON	IPLETION	1 US. IVƏ IN Ø) 1'±	FT. 10 FT.	INS. INS.

McDOWELL & ASSOCIATES .
Geotechnical, Environmental, & Hydrogeologic Services
21355 Matcher Avenue • Ferndale, MI 48220
Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT	NO, TP-7
PROJECT	Highland Park Site
	Aven and John B Bonds

JOB NO. 04-142 LOCATION Avon and John R Roads Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Penelration Una Comp. Moisture % Dry Den WŁ P.C.F. Str. Sample & Type Depin Legend **SOIL DESCRIPTION** Blows for 6° WL P.C.F. Moist dark brown silty sandy TOPSOIL & 0'10" **VEGETATION, fill** 2 3 Wet brown fine SAND 4 5 5'3" Wet gray fine to medium SAND with gravel 6 6'6" 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 REMARKS: TYPE OF SAMPLE GROUND WATER OBSERVATIONS D. - DISTURBED U.L. - UNDIŞT, LIMER FY. FT. ing. Ing. Ing. Ing. G.W. ENCOUNTERED AT G.W. ENCOUNTERED AT S.T. - SHELBY TUBE
S.S. - SPLIT SPOON
R.G. - ROCK CORE
() - PENETROMETER G.W. AFTER COMPLETION 0
G.W. AFTER HRS.
G.W. VOLUMES heavy cave in @ 0'10" 10 Standard Penetration Teal - Orlying 2" OD Sampler 1" With 140# Hammer Falling 30"; Count Made at 6" Intervals

McDOWELL & ASSOCIATES Gentechnical, Savironmental, & Hydrogeologic Services
21355 Hatcher Avenue • Forndale, MI 48220
Phone: (248) 399-2066 = Fax: (248) 399-2157

LOG OF TEST PIT NO.

TP-9

PROJECT __Highland Park Site

LOCATION Avon and John R Roads

	SURFACE ELEV. DATE 4-02-04				Rochester Hills, Michigan						
Sample & Typu	Depth	Legend		SOIL DESCRIPTION	Penebation Blows for 6"	erufaloM %	Natural WL P.C.F.	Dry Den WL P.C.F.	Vac. Comp. , Strength PSF.	Bir.	
		? < ² < ² <	0'6"	Moist brown oxidized slity sandy TOPSOIL &							
\vdash	1 1			VEGETATION, fill	-	-	ļ	 -		ļ	
	2				-	 	 			 	
-	 -			-				 		 	
-	3			TREE STUMPS, METAL DEBRIS, BROKEN							
			ĺ	CONCRETE mixed with discolored sand							
	4									ــــــ	
	- 5		5'0"			 -				├─	
+	+		au.		-					₩	
	6										
\vdash				Moist brown oxidized silty fine SAND, fill							
\vdash	7						<u> </u>				
\vdash	8					 			ļ 	 -	
	1		8'0⁵		-		1				
	9			Wet brown and gray fine to medium SAND		† — —	7			,	
				with gravel							
·}	10		•			ļ					
-	11	<u> </u>	10'6"		-	 	┪	 		 .	
	- '	1			-	-				-	
	12	j		1					 		
.	<u> </u>]									
	13									<u> </u>	
\vdash	14					ļ	 	 			
		1								-	
	15]	(
 	 	1									
 	16				ļ	 	 			-	
\vdash	17	j	}		-	 	 	 		├─	
		İ	<u> </u>								
	18										
	175-				<u> </u>						
	19			•	-		 -	ļ		—	
\vdash	20	1			 						
		j	}			†		 			
-	21										
 	22		'			ļ	<u> </u>				
]		-	 	 	 		 	
	23	1	{							\vdash	
]									
\vdash	24	l	ļ								
	25	İ			<u>. </u>		 -			<u> </u>	
	- 23	ł							_	 	
	PE OF SAMPLE		RBJARKS:		_	G	יייייייייייייייייייייייייייייייייייייי	ER OBSERV	AHOITA	Щ.	
Ų.I	- Disturb L Undist. I	Liner			;	ENCOUNTE				NIC.	
S.7	r Shelby' S Split Sp				G.W.	ENCOUNTE	RED AT	-	FT. 0	INS. INS.	
R.0	C ROCK CO) - PENETR	DRÉ	S	andard Peneiralion Test - Driving 2' OD Sampler 1' With 140# Hammer Falling 30": Count Made at 8" Intervals	G.W.	AFTER COM AFTER VOLUMES	HR	8 l\$. vçin.@\8' <u>+</u>	FT. 0 FT.	INS. INS.	

McDOWELL & ASSOCIATES

Gentechnical, Environmental, & Hydrogeologic Services 21355 Hatcher Avenue . Ferndale, MI 48220 Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT NO.	_TP-10	

Madium

PROJECT _Highland Park Site

LOCATION Avon and John R Roads

04-142 JOB NO. Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Natura! WLF.C.F. Unc. Comp. Strength PSF. Penetration Blavs for B* Dry Oen Wt. P.C.F. Moisture Depth **SOIL DESCRIPTION** Molst dark brown silty sandy TOPSOIL & 1'2" VEGETATION, fill 2 Moist brown fine SAND with some silt content 2'9" 3 Moist to wat brown fine to medium SAND with 4 gravel and slight silt content 5 5'0" Wet gray clayey SILT 5'10" 6 7 Moist blue silty CLAY В 8'6" 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 REMARKS: TYPE OF SAMPLE GROUND WATER OBSERVATIONS D. DISTURBED
U.L. UNDEST, LINER
S.T. SHELBY TUBE
S.G. - SPLIT SPOON
R.C. - ROCK CORE G.W. ENCOUNTERED AT G.W. ENCOUNTERED AT G.W. AFTER COMPLETION FT. FT. FT. FT. INS. INS. INS. 0 ٥ andard Penetration Test - Driving 2" OD Sempler 1" With 140# Hammer Felling 30": Coun! Made at 6" Intervals G.W. AFTER G.W. VOLUMES HRS.

35 154

.;;

McDOWELL & ASSOCIATES
Geotechnical, Environmental, & Hydrogeologic Services
21355 Hatcher Avenue & Ferndale, MI 48220
Phone: (248) 399-2066 & Fax: (248) 399-2157

LOG OF TEST PIT NO.

TP-11

PROJ

PROJECT Highland Park Site

JOB NO. _____04-142

LOCATION Avon and John R Roads

			SURFACE ELEV. DATE 4-02-04				, Rochester Hills, Michigan						
Sample & Type		Depth	Legend		SOIL DESCRIPTION	Penetration Blows for 6	entraion)	Natural WLP.C.F.	Dry Den Wt. P.C.F.	Unc. Comp. Strength PSF.	Str.		
					Moist brown and black silty sandy TOPSOIL &	-							
	Н	_1	રિસ્ટ્રિસ	•	VEGETATION, fill	<u> </u>	ļ			-			
	T	2		2'0"	,								
				20	•	<u> </u>							
	L	3			Moist brown fine SAND with some silty content	ļ	<u> </u>			.	<u> </u>		
 	+	4					 						
	t				•		1						
		5											
ļ	╁	6		5'9"	Moist to wet brown fine to medium SAND with		ļ				 		
\vdash	t	-			grave!	1	 		_	<u> </u>	 		
		7		7'0"									
	1				Wet gray sandy SILT		ļ				<u> </u>		
-	╀	8] .	- '•		 	-			 -		
_	十	9	3 5 1 3 1 1 1 1 1 1 1	8'6"		1 !	1		-	 	\vdash		
	I]			-					\Box		
 -	+	10	.		*	1							
- '	+	11	1	ŀ		<u> </u>			 		├		
┼──	t	 	1	!		 	 		 		╁		
		12]				<u> </u>	<u> </u>			<u> </u>		
<u></u>	-	-				•							
	╀	13		1	•				ļ	· -	├──		
	۲	14			•	-	-	-			├		
	l]					1			1		
	Ļ	15		1		1	ļ <u>.</u>			,			
-	╀	16				ļ <u>.</u>	 	ļ			<u> </u>		
	t	10	1			-	 	 -	 		├		
\vdash	十	17	1			-					 -		
	I]										
	+	18	ľ	1		<u> </u>	<u> </u>						
 	+	19	1 !	1	r.	-	 	 	 		 		
	\dagger	<u> </u>	1 .	ŀ		-	1	 	 	 	 -		
	T	20] 1	1									
-	╬						ļ		ļ				
	╁	21	1			-	 	 		 	+-		
	\dagger	22	†	1		l.	 	 	 		 		
	T]			<u> </u>	<u> </u>				1		
	4	23	1			,							
-	╀	24				1	ļ. 	ļ			 		
	+	24	1			<u> </u>	+	 	 		+-		
		25	1								1		
			<u> </u>	<u> </u>	1								
		E OF SAMPL - DISTURE		remarks:			G	ROUND WAT	TER OBSER	VATIONS			
	U.L. 5.T. S.S.	- Undist. - Shelby - Split si	Liner Yube Poon			G,W,	ENCOUNTE ENCOUNTE AFTER COI	RED AT	7 7	FT. 0 FT. 0	INS. INS. INS.		
	R.C ROCK CORE Standard Penetration Test - Driving 2" OD Sampler 1" Will; () - PENETROMETER 140# Hammer Falling 30"; Count Made at 6" intervals			g.w.	G.W. AFTER HRS. FT. INS. G.W. VOLUMES heavy cave in @ 3'±								

McDOWELL & ASSOCIATES
Geotechnical Environmental, & Hydrogeologic Services
21355 Hawher Avenue • Familale, MI 48220
Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT	NO. TP-12	
PROJECT	Highland Park Site	

JOB NO. 04-142 LOCATION Avon and John R Roads

Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Dry Don Wt. P.C.F. Penetration Blows for 6" 6k. % SOIL DESCRIPTION Depth Legend WL P.C.F. Moist brown sandy CLAY with vegetation, fill 0'8" Moist oxidized clayey SAND mixed with asphalt, 3 gravel and trace of vegetation, fill 4 5 6'0" 6 7 TREE STUMPS AND LIMBS, fill 8 9 9'0" Wet gray silty fine SAND 10 10'6" 11 12 13 14 15 16 17 18 19 Note: Stumps as large as 3' diameter. 20 22 23 24 25 REMARKS: TYPE OF SAMPLE **GROUND WATER OBSERVATIONS** D. - DISTURBED U.L. - UNDIST, LINER G.W. ENCOUNTERED AT G.W. ENCOUNTERED AY G.W. AFTER COMPLETION G.W. AFTER HRS. G.W. VOLUMES heavy & INS. INS. INS. - SHELBY TUBE - SPLIT SPOON - ROCK CORE 9 Standard Penekation Test - Driving 2" OD Sampler 1' With 140# Hammer Faijing 30": Count Made at 8" Intervals () - PENETROMETER caye in @ 6'±

McDOWELL & ASSOCIATES
Geoteshnical, Environmental, & Hydrogeologic Services
21355 Hatcher Avenue • Femdale, Mí 48220

LOG OF TEST PIT NO.

TP-13

Phone: (248) 399-2066 • Fax: (248) 399-2157

JOB NO. 04-142

PROJECT Highland Park Site

LOCATION Avon and John R Roads

Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Unc. Comp. Strength PSF. Penetration Natural Moleture % Sir. % SOIL DESCRIPTION Lagend WLP,C.F. WL P.C.F. & Турв Moist brown clayey TOPSOIL & VEGETATION, fill 0'7" 2 Moist brown oxidized silty sandy gravelly CLAY with some decomposed wood, fill 3 4 4'0" Wet brown fine to medium SAND & GRAVEL 5 with some stumps and limbs, fill 5'6" 6 Wet gray sandy clayey SILT 6'6" 7 В 9 10 .11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 TYPE OF SAMPLE
D. - DISTURBED
U.L - UNDIST, LINER
S.T. - SHELBY TUBE REMARKS: GROUND WATER OBSERVATIONS G.W. ENCOUNTERED AT G.W. ENCOUNTERED AT INS. INS. S.S. - SPLIT SPOON R.C. - ROCK CORE () - PENETROMETER G.W. AFTER COMPLETION 4
G.W. AFTER HRS.
G.W. VOLUMES heavy cays in (2) 2'+ Standard Penetration Test - Driving 2" OD Sampler 1' With 140# Hammer Falling 30": Count Made at 6" Intervals INS.

McDOWELL & ASSOCIATES
Gentechnical Environmental, & Hydrogeologic Services
21355 Hatcher Avenue = Ferndale, MI 48220
Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT NO.

TP-16

PROJ

PROJECT Highland Park Site

JOB NO. _____04-142

LOCATION_ Avon and John R Roads

Rochester Hills, Michigan DATE 4-02-04 SURFACE ELEV. Penetration Blows for 6" Unc. Comp. Strength PSF. Natural WL P.C.F. Dry Den Wt. P.C.F. Moislure Str. SOIL DESCRIPTION Depth Moist dark brown and black slity fine sandy TOPSOIL & VEGETATION with trace of plastic sheeting, fill 2 Moist brown clayey silty fine SAND with pebbles 2'0" and occasional stones, fill 3 3'0" 4 5 6 Moist variegated very slity fine SAND with seams and layers of moist brown sandy silt 7 8 9 10 10'6" 11 12 13 14 15 16 17 18 Note: 19 Gas vents in place. 20 21 22 23 24 25 REMARKS: TYPE OF SAMPLE GROUND WATER OBSERVATIONS D. DISTURBED
U.L. UNDIST. LINER
S.T. SHELBY TUBE
S.S. SPLIT SPOON
R.C. - ROCK CORE
() - PENETROMETER G.W. ENCOUNTERED AT G.W. ENCOUNTERED AT G.W. AFTER COMPLETION none ins. Ins. Ins. Standard Penetration Test - Driving 2° OD Sampler 1° With 140% Hammer Falling 30°: Count Made at 6° Intervals G.W. AFTER G.W. VOLUMES HRS.

i ja

17.

a Atomic Man McDOWELL & ASSOCIATES
Geotechnical, Environmental, & Hydrogeologic Services
21355 Hatcher Avenue • Ferndale, M1 48220
Phone: (248) 399-2066 • Fax: (248) 399-2157

LOG OF TEST PIT NO. TP-17

PROJECT Highland Park Site

LOCATION Avon and John R Roads

JOB NO, 04-142

Rochester Hills, Michigan

!			SUR	FACE ELEV	/	DATE 4-02-04	_		Rock	ester Hill	s, Michiga	<u>'</u>	
S	vnole Type	Depth	Legend		SOIL DESCRIPTION			nevellon exa lar 6º	Moisture %	Natural Wt. P.C.F.	Dry Den Wt. P.C.F.	Une. Comp. Strength PSF.	Бт. %
Ė			दिददेव		Moist black silty fine sandy	TOPSOIL &	$\overline{}$						
L	ļ	1		}	VEGETATION, fill		İ						<u> </u>
ŀ		 	13333	1			ŀ			-			
-		2	<u> </u>	2'0'	Concrete Slab at 2'0"	-^ .			 			<u> </u>	⁻
F		3	i										
F	一		1 1	ļ			ı						
		4											<u> </u>
L									,				
⊢	_	5			·				 		<u> </u>		
-		6	}						<u> </u>				
· -		1	1	ļ			1						
		7	1										
]										
<u> </u> _	-	8	4		•								<u> </u>
}		9	1 .					· ·	 	 	 	-	
H		3	1 `					 ;	 	 	 		
·		10	1						i –	1			<u> </u>
]						ļ				
		11	<u> </u>		k - +								<u> </u>
F		12	4	1									├ ─
Ŀŀ		12	┥	-						 			├
٠,		13	1					,					-
		14]	ļ									
┝	_		-			* *			ļ.——	<u> </u>			<u> </u>
-		15	╣						 		-		
H		16	-{ '						 	┝			
F			1	1		•			7				
		17]	1									
L] .	1				•					
-		18	-					,	 -	ļ			
\vdash		19	4] .	•					 			├──
┝		19	┨ .		Notes:				 				
ŀ	_	20	1	1	TP-17 excavated adjacer pavement, unable to find	it to old asphalt							<u> </u>
			1 .		diameter trees in and aro	und TP-17.							
-		21	4						<u> </u>				ļ
-		22	· ·		20' long trench approximate excavated with backhos.	ately 1.5' to 2' deep,	•		 	 			
-	_	- 44	1	}	excavated with DackNOB.				 	 	 	· · · · · · · · · · · · · · · · · · ·	
十		23	1	1					1	 			
			1							1			
		24]										
Ļ		=	4							<u> </u>			<u> </u>
-		25	4						 	 			├─
+		PE OF SAMPI	<u></u>	REMARKS:				 -	<u>. </u>	<u></u>	<u></u>		<u></u>
	D.	- Disturi	BED	1 Mediatric 21				1			TER OBSERV		
	S.	1 UNDIST. T SMELBY	TUBE .					I G.W.	ENCOUNTE ENCOUNTE	RED AT		FT. FT.	INS.
.	S.	S SPLITS C ROCK C	POON		Standard Panglestion Test - Drivee 2	2 OD Sampler 1' With		G.W.	AFTER CON	(PLETION	none RS.	FT.	INŚ. INŚ.
	ï) - PENETI	OMETER	•	Standard Pendiration Test - Driving 2 140# Hammer Falling 30": Count M	lade at 6' intervois		G.W.	VOLUMES	e.	****	r 1.	1143,
_													

Attachment IV

Chemical Test Results with Chain-of-Custody Documentation

Supplemental Report

Report ID: S43774.01(02) Generated on 12/30/2022

Replaces report S43774.01(01) generated on 12/30/2022

Report to

Attention: Jennifer Lagerbohm McDowell & Associates 21355 Hatcher Avenue Ferndale, MI 48220

Phone: O:248-399-2066 C:248-514-6950 FAX: Email: jennifer.lagerbohm@mcdowasc.com

Addtional Contacts: John Kemp, Melanie McDowell

Report produced by

Merit Laboratories, Inc.

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: John Laverty (johnlaverty@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Summary

Lab Sample ID(s): S43774.01-S43774.06

Project: 22-16348

Collected Date(s): 12/22/2022

Submitted Date/Time: 12/22/2022 11:55

Sampled by: Jen L

P.O. #:

Table of Contents

Cover Page (Page 1)

General Report Notes (Page 2)

Report Narrative (Page 2)

Laboratory Certifications (Page 3)

Qualifier Descriptions (Page 3)

Glossary of Abbreviations (Page 3)

Naya Mushah

Method Summary (Page 4)

Sample Summary (Page 5)

Maya Murshak Technical Director

Supplemental Report

General Report Notes

Analytical results relate only to the samples tested, in the condition received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

When MDL results are provided, then 'Not detected' indicates that parameter was not found at a level equal to or greater than the MDL.

40 CFR Part 136 Table II Required Containers, Preservation Techniques and Holding Times for the Clean Water Act specify that samples

for acrolein and acrylonitrile, and 2-chloroethylvinyl ether need to be preserved at a pH in the range of 4 to 5 or if not preserved, analyzed within 3 days of sampling.

QA/QC corresponding to this analytical report is a separate document with the same Merit ID reference and is available upon request.

Full accreditation certificates are available upon request. Starred (*) analytes are not NELAP accredited.

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc.

Limits for drinking water samples, are listed as the MCL Limits (Maximum Contaminant Level Concentrations)

PFAS requirement: Section 9.3.8 of U.S. EPA Method 537.1 states "If the method analyte(s) found in the Field Sample is present in the

FRB at a concentration greater than 1/3 the MRL, then all samples collected with that FRB are invalid and must be recollected and reanalyzed."

Samples submitted without an accompanying FRB may not be acceptable for compliance purposes.

Wisconsin PFAs analysis: MDL = LOD; RL = LOQ. LOD and LOQ are adjusted for dilution.

Report Narrative

All analyses completed

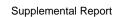
Laboratory Certifications


Authority	Certification ID
Michigan DEQ	#9956
DOD ELAP/ISO 17025	#69699
WBENC	#2005110032
Ohio VAP	#CL0002
Indiana DOH	#C-MI-07
New York NELAC	#11814
North Carolina DENR	#680
North Carolina DOH	#26702
Alaska CSLAP	#17-001
Pennsylvania DEP	#68-05884
Wisconsin DNR	FID# 399147320

Qualifier Descriptions

Qualifier	Description
!	Result is outside of stated limit criteria
В	Compound also found in associated method blank
E	Concentration exceeds calibration range
F	Analysis run outside of holding time
G	Estimated result due to extraction run outside of holding time
Н	Sample submitted and run outside of holding time
1	Matrix interference with internal standard
J	Estimated value less than reporting limit, but greater than MDL
L	Elevated reporting limit due to low sample amount
M	Result reported to MDL not RDL
0	Analysis performed by outside laboratory. See attached report.
R	Preliminary result
S	Surrogate recovery outside of control limits
Т	No correction for total solids
X	Elevated reporting limit due to matrix interference
Υ	Elevated reporting limit due to high target concentration
b	Value detected less than reporting limit, but greater than MDL
е	Reported value estimated due to interference
j	Analyte also found in associated method blank
р	Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.
x	Preserved from bulk sample

Glossary of Abbreviations


Abbreviation	Description
RL/RDL	Reporting Limit
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
SW	EPA SW 846 (Soil and Wastewater) Methods
E	EPA Methods
SM	Standard Methods
LN	Linear
BR	Branched

Method Summary

Method	Version
SM2540B	Standard Method 2540 B 2015
SW3050B	SW 846 Method 3050B Revision 2 December 1996
SW3546	SW 846 Method 3546 Revision 0 February 2007
SW5035A	SW 846 Method 5035A Revision 1 July 2002
SW5035A/8260C	SW 846 Method 8260C Revision 3 August 2006 / 5035A Revision 1 July 2002
SW6020A	SW 846 Method 6020A Revision 1 February 2007
SW7471B	SW 846 Method 7471B Revision 2 February 2007
SW8081B	SW 846 Method 8081B Revision 2 February 2007
SW8082A	SW 846 Method 8082A Revision 1 February 2007
SW8270D	SW 846 Method 8270D Revision 4 February 2007

Sample Summary (6 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S43774.01	2a	Soil	12/22/22 08:00
S43774.02	2a-D	Soil	12/22/22 08:00
S43774.03	3a	Soil	12/22/22 08:00
S43774.04	3b	Soil	12/22/22 08:00
S43774.05	4a	Soil	12/22/22 08:00
S43774.06	5a	Soil	12/22/22 10:00

Lab Sample ID: \$43774.01

Sample Tag: 2a

Collected Date/Time: 12/22/2022 08:00

Matrix: Soil

COC Reference: 151452

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	4oz Glass	None	Yes	5.1	IR

Extraction / Prep.

Parameter	Result	Method	Run Date	Analyst	Flags
Metal Digestion	Completed	SW3050B	12/27/22 10:45	JRH	
PNA Extraction*	Completed	SW3546	12/30/22 12:20	JGH	
Mercury Digestion	Completed	SW7471B	12/29/22 13:56	CTV	

Inorganics

Method: SM2540B, Run Date: 12/22/22 16:12, Analyst: MAM

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Total Solids*	89	1		%	1		

Metals

Method: SW6020A, Run Date: 12/27/22 12:52, Analyst: JRH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Arsenic	13.3	0.20		mg/kg	256	7440-38-2	
Barium	844	1.0		mg/kg	256	7440-39-3	
Cadmium	4.71	0.20		mg/kg	256	7440-43-9	
Chromium	22.2	0.50		mg/kg	256	7440-47-3	
Copper	131	0.50		mg/kg	256	7440-50-8	
Lead	322	0.30		mg/kg	256	7439-92-1	
Selenium	0.63	0.40		mg/kg	256	7782-49-2	
Silver	1.13	0.20		mg/kg	256	7440-22-4	
Zinc	489	0.50		mg/kg	256	7440-66-6	

Method: SW7471B, Run Date: 12/29/22 15:01, Analyst: CTV

,	· · · · · · · · · · · · · · · · · · ·						
Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Mercury	0.357	0.050		ma/ka	68	7439-97-6	

Organics - Semi-Volatiles

Polynuclear Aromatics, Method: SW8270D, Run Date: 12/30/22 15:49, Analyst: JGH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Acenaphthene	Not detected	300		ug/kg	6	83-32-9	
Acenaphthylene	Not detected	300		ug/kg	6	208-96-8	
Anthracene	1,100	300		ug/kg	6	120-12-7	
Benzo(a)anthracene	2,800	300		ug/kg	6	56-55-3	
Benzo(a)pyrene	2,500	300		ug/kg	6	50-32-8	
Benzo(b)fluoranthene	3,300	300		ug/kg	6	205-99-2	p
Benzo(k)fluoranthene	3,700	300		ug/kg	6	207-08-9	p
Benzo(ghi)perylene	1,300	300		ug/kg	6	191-24-2	
Chrysene	2,800	300		ug/kg	6	218-01-9	
Dibenzo(ah)anthracene	Not detected	300		ug/kg	6	53-70-3	
Fluoranthene	6,100	300		ug/kg	6	206-44-0	
Fluorene	500	300		ug/kg	6	86-73-7	

p-Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.

Supplemental Report

Lab Sample ID: S43774.01 (continued)

Sample Tag: 2a

Polynuclear Aromatics, Method: SW8270D, Run Date: 12/30/22 15:49, Analyst: JGH (continued)

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Indeno(1,2,3-cd)pyrene	1,300	300		ug/kg	6	193-39-5	
Naphthalene	Not detected	300		ug/kg	6	91-20-3	
Phenanthrene	4,200	300		ug/kg	6	85-01-8	
Pyrene	4,900	300		ug/kg	6	129-00-0	
2-Methylnaphthalene	Not detected	300		ug/kg	6	91-57-6	

Page 7 of 19

Lab Sample ID: S43774.02

Sample Tag: 2a-D

Collected Date/Time: 12/22/2022 08:00

Matrix: Soil

COC Reference: 151452

Sample Containers

#	Type	Preservative(s)	Refrigerated?	Arrival Temp. (C)	I hermometer #
1	4oz Glass	None	Yes	5.1	IR

Extraction / Prep.

Parameter	Result	Method	Run Date	Analyst	Flags
Metal Digestion	Completed	SW3050B	12/27/22 10:45	JRH	
PNA Extraction*	Completed	SW3546	12/30/22 12:20	JGH	
Mercury Digestion	Completed	SW7471B	12/29/22 13:56	CTV	

Inorganics

Method: SM2540B, Run Date: 12/22/22 16:12, Analyst: MAM

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Total Solids*	89	1		%	1		

Metals

Method: SW6020A, Run Date: 12/27/22 12:54, Analyst: JRH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags	
Arsenic	13.9	0.20		mg/kg	266	7440-38-2		
Barium	727	1.0		mg/kg	266	7440-39-3		
Cadmium	6.86	0.20		mg/kg	266	7440-43-9		
Chromium	19.8	0.50		mg/kg	266	7440-47-3		
Copper	494	0.50		mg/kg	266	7440-50-8		
Lead	999	0.30		mg/kg	266	7439-92-1		
Selenium	1.01	0.40		mg/kg	266	7782-49-2		
Silver	2.31	0.20		mg/kg	266	7440-22-4		
Zinc.	723	0.50		ma/ka	266	7440-66-6		

Method: SW7471B, Run Date: 12/29/22 15:04, Analyst: CTV

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags	
Mercury	0.323	0.050		mg/kg	66	7439-97-6		

Organics - Semi-Volatiles

Polynuclear Aromatics, Method: SW8270D, Run Date: 12/30/22 16:13, Analyst: JGH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Acenaphthene	Not detected	300		ug/kg	6	83-32-9	
Acenaphthylene	Not detected	300		ug/kg	6	208-96-8	
Anthracene	700	300		ug/kg	6	120-12-7	
Benzo(a)anthracene	2,000	300		ug/kg	6	56-55-3	
Benzo(a)pyrene	2,000	300		ug/kg	6	50-32-8	
Benzo(b)fluoranthene	3,600	300		ug/kg	6	205-99-2	р
Benzo(k)fluoranthene	4,000	300		ug/kg	6	207-08-9	р
Benzo(ghi)perylene	1,200	300		ug/kg	6	191-24-2	
Chrysene	2,200	300		ug/kg	6	218-01-9	
Dibenzo(ah)anthracene	500	300		ug/kg	6	53-70-3	
Fluoranthene	4,500	300		ug/kg	6	206-44-0	
Fluorene	Not detected	300		ug/kg	6	86-73-7	

 $p\hbox{-Benzo(b)} Fluoranthene \ and \ Benzo(k) Fluoranthene \ integrated \ as \ one \ peak.$

Supplemental Report

Lab Sample ID: S43774.02 (continued)

Sample Tag: 2a-D

Polynuclear Aromatics, Method: SW8270D, Run Date: 12/30/22 16:13, Analyst: JGH (continued)

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Indeno(1,2,3-cd)pyrene	1,100	300		ug/kg	6	193-39-5	
Naphthalene	Not detected	300		ug/kg	6	91-20-3	
Phenanthrene	2,600	300		ug/kg	6	85-01-8	
Pyrene	3,800	300		ug/kg	6	129-00-0	
2-Methylnaphthalene	Not detected	300		ug/kg	6	91-57-6	

Page 9 of 19

Lab Sample ID: S43774.03

Sample Tag: 3a

Collected Date/Time: 12/22/2022 08:00

Matrix: Soil

COC Reference: 151452

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	4oz Glass	None	Yes	5.1	IR
1	40ml Glass	MeOH	Yes	5.1	IR

Extraction / Prep.

Parameter	Result	Method	Run Date	Analyst	Flags
Metal Digestion	Completed	SW3050B	12/27/22 10:45	JRH	
Extraction, PCB*	Completed	SW3546	12/27/22 13:00	TAW	
PNA Extraction*	Completed	SW3546	12/30/22 12:20	JGH	
Sample wt. (g) / Methanol (ml)*	9.851/10	SW5035A	12/27/22 12:20	BDO	
Mercury Digestion	Completed	SW7471B	12/29/22 13:56	CTV	

Inorganics

Method: SM2540B, Run Date: 12/22/22 16:12, Analyst: MAM

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Total Solids*	89	1		%	1		

Metals

Method: SW6020A, Run Date: 12/27/22 12:56, Analyst: JRH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Arsenic	24.5	0.20		mg/kg	262	7440-38-2	
Barium	862	1.0		mg/kg	262	7440-39-3	
Cadmium	7.64	0.20		mg/kg	262	7440-43-9	
Chromium	303	0.50		mg/kg	262	7440-47-3	
Copper	1,710	0.50		mg/kg	262	7440-50-8	
Lead	1,370	0.30		mg/kg	262	7439-92-1	
Selenium	1.67	0.40		mg/kg	262	7782-49-2	
Silver	4.95	0.20		mg/kg	262	7440-22-4	
Zinc	1,050	0.50		mg/kg	262	7440-66-6	

Method: SW7471B, Run Date: 12/29/22 15:07, Analyst: CTV

Method. OW/4/1D, Rull Date. 12/	Method: OW1471B, Rull Date: 1223/22 13:07, Analyst: O1V										
Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags				
Mercury	0.812	0.050		mg/kg	64	7439-97-6					

Organics - PCBs/Pesticides

PCB List, Method: SW8082A, Run Date: 12/28/22 13:54, Analyst: JANB

		, ,					
Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
PCB-1016	Not detected	330		ug/kg	10	12674-11-2	
PCB-1242	Not detected	330		ug/kg	10	53469-21-9	
PCB-1221	Not detected	330		ug/kg	10	11104-28-2	
PCB-1232	Not detected	330		ug/kg	10	11141-16-5	
PCB-1248	Not detected	330		ug/kg	10	12672-29-6	
PCB-1254	Not detected	330		ug/kg	10	11097-69-1	
PCB-1260	Not detected	330		ug/kg	10	11096-82-5	

Lab Sample ID: S43774.03 (continued)

Sample Tag: 3a

Organics - Semi-Volatiles

Polynuclear Aromatics, Method: SW8270D, Run Date: 12/30/22 16:36, Analyst: JGH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags	
Acenaphthene	400	300		ug/kg	6	83-32-9		_
Acenaphthylene	Not detected	300		ug/kg	6	208-96-8		
Anthracene	1,600	300		ug/kg	6	120-12-7		
Benzo(a)anthracene	3,900	300		ug/kg	6	56-55-3		
Benzo(a)pyrene	3,300	300		ug/kg	6	50-32-8		
Benzo(b)fluoranthene	6,200	300		ug/kg	6	205-99-2	р	
Benzo(k)fluoranthene	6,900	300		ug/kg	6	207-08-9	р	
Benzo(ghi)perylene	1,700	300		ug/kg	6	191-24-2		
Chrysene	4,200	300		ug/kg	6	218-01-9		
Dibenzo(ah)anthracene	600	300		ug/kg	6	53-70-3		
Fluoranthene	9,100	300		ug/kg	6	206-44-0		
Fluorene	500	300		ug/kg	6	86-73-7		
Indeno(1,2,3-cd)pyrene	1,700	300		ug/kg	6	193-39-5		
Naphthalene	Not detected	300		ug/kg	6	91-20-3		
Phenanthrene	5,800	300		ug/kg	6	85-01-8		
Pyrene	7,400	300		ug/kg	6	129-00-0		
2-Methylnaphthalene	Not detected	300		ug/kg	6	91-57-6		

Organics - Volatiles

Volatile Organics 5035, Method: SW5035A/8260C, Run Date: 12/28/22 23:12, Analyst: KAG

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Diethyl ether	Not detected	300		ug/kg	63.2	60-29-7	
Acetone	Not detected	1,000		ug/kg	63.2	67-64-1	
Methyl iodide	Not detected	100		ug/kg	63.2	74-88-4	
Carbon disulfide	Not detected	300		ug/kg	63.2	75-15-0	
tert-Methyl butyl ether (MTBE)	Not detected	300		ug/kg	63.2	1634-04-4	
Acrylonitrile	Not detected	100		ug/kg	63.2	107-13-1	
2-Butanone (MEK)	Not detected	950		ug/kg	63.2	78-93-3	
Dichlorodifluoromethane	Not detected	300		ug/kg	63.2	75-71-8	
Chloromethane	Not detected	300		ug/kg	63.2	74-87-3	
Vinyl chloride	Not detected	60		ug/kg	63.2	75-01-4	
Bromomethane	Not detected	300		ug/kg	63.2	74-83-9	
Chloroethane	Not detected	300		ug/kg	63.2	75-00-3	
Trichlorofluoromethane	Not detected	100		ug/kg	63.2	75-69-4	
1,1-Dichloroethene	Not detected	60		ug/kg	63.2	75-35-4	
Methylene chloride	Not detected	100		ug/kg	63.2	75-09-2	
trans-1,2-Dichloroethene	Not detected	60		ug/kg	63.2	156-60-5	
1,1-Dichloroethane	Not detected	60		ug/kg	63.2	75-34-3	
cis-1,2-Dichloroethene	Not detected	60		ug/kg	63.2	156-59-2	
Tetrahydrofuran*	Not detected	1,000		ug/kg	63.2	109-99-9	
Chloroform	Not detected	60		ug/kg	63.2	67-66-3	
Bromochloromethane	Not detected	100		ug/kg	63.2	74-97-5	
1,1,1-Trichloroethane	Not detected	60		ug/kg	63.2	71-55-6	
4-Methyl-2-pentanone (MIBK)	Not detected	3,000		ug/kg	63.2	108-10-1	
2-Hexanone	Not detected	3,000		ug/kg	63.2	591-78-6	
Carbon tetrachloride	Not detected	60		ug/kg	63.2	56-23-5	
Benzene	Not detected	60		ug/kg	63.2	71-43-2	
1,2-Dichloroethane	Not detected	60		ug/kg	63.2	107-06-2	

 $p\hbox{-Benzo}(b) Fluoranthene \ and \ Benzo(k) Fluoranthene \ integrated \ as \ one \ peak.$

Lab Sample ID: S43774.03 (continued)

Sample Tag: 3a

Volatile Organics 5035, Method: SW5035A/8260C, Run Date: 12/28/22 23:12, Analyst: KAG (continued)

Parameter	Result	RL MDL	Units	Dilution	CAS#	Flags
Trichloroethene	Not detected	60	ug/kg	63.2	79-01-6	
1,2-Dichloropropane	Not detected	60	ug/kg	63.2	78-87-5	
Bromodichloromethane	Not detected	100	ug/kg	63.2	75-27-4	
Dibromomethane	Not detected	300	ug/kg	63.2	74-95-3	
cis-1,3-Dichloropropene	Not detected	60	ug/kg	63.2	10061-01-5	
Toluene	200	60	ug/kg	63.2	108-88-3	
trans-1,3-Dichloropropene	Not detected	60	ug/kg	63.2	10061-02-6	
1,1,2-Trichloroethane	Not detected	60	ug/kg	63.2	79-00-5	
Tetrachloroethene	Not detected	60	ug/kg	63.2	127-18-4	
trans-1,4-Dichloro-2-butene	Not detected	60	ug/kg	63.2	110-57-6	
Dibromochloromethane	Not detected	100	ug/kg	63.2	124-48-1	
1,2-Dibromoethane	Not detected	30	ug/kg	63.2	106-93-4	M
Chlorobenzene	Not detected	60	ug/kg	63.2	108-90-7	
1,1,1,2-Tetrachloroethane	Not detected	100	ug/kg	63.2	630-20-6	
Ethylbenzene	Not detected	60	ug/kg	63.2	100-41-4	
p,m-Xylene	100	100	ug/kg	63.2		
o-Xylene	70	60	ug/kg	63.2	95-47-6	
Styrene	Not detected	60	ug/kg	63.2	100-42-5	
Isopropylbenzene	Not detected	300	ug/kg	63.2	98-82-8	
Bromoform	Not detected	100	ug/kg	63.2	75-25-2	
1,1,2,2-Tetrachloroethane	Not detected	60	ug/kg	63.2	79-34-5	
1,2,3-Trichloropropane	Not detected	100	ug/kg	63.2	96-18-4	
n-Propylbenzene	Not detected	60	ug/kg	63.2	103-65-1	
Bromobenzene	Not detected	100	ug/kg	63.2	108-86-1	
1,3,5-Trimethylbenzene	Not detected	60	ug/kg	63.2	108-67-8	
tert-Butylbenzene	Not detected	60	ug/kg	63.2	98-06-6	
1,2,4-Trimethylbenzene	Not detected	60	ug/kg	63.2	95-63-6	
sec-Butylbenzene	Not detected	60	ug/kg	63.2	135-98-8	
p-Isopropyltoluene	100	100	ug/kg	63.2	99-87-6	
1,3-Dichlorobenzene	Not detected	100	ug/kg	63.2	541-73-1	
1,4-Dichlorobenzene	Not detected	100	ug/kg	63.2	106-46-7	
1,2-Dichlorobenzene	Not detected	100	ug/kg	63.2	95-50-1	
1,2,3-Trimethylbenzene	Not detected	60	ug/kg	63.2	526-73-8	
n-Butylbenzene	Not detected	60	ug/kg	63.2	104-51-8	
Hexachloroethane	Not detected	400	ug/kg	63.2	67-72-1	
1,2-Dibromo-3-chloropropane	Not detected	300	ug/kg	63.2	96-12-8	
1,2,4-Trichlorobenzene	Not detected	420	ug/kg	63.2	120-82-1	
1,2,3-Trichlorobenzene	Not detected	420	ug/kg	63.2	87-61-6	
Naphthalene	300	300	ug/kg	63.2	91-20-3	
2-Methylnaphthalene	200	100	ug/kg	63.2	91-57-6	

M-Result reported to MDL not RDL

Page 12 of 19

Lab Sample ID: S43774.04

Sample Tag: 3b

Collected Date/Time: 12/22/2022 08:00

Matrix: Soil

COC Reference: 151452

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	4oz Glass	None	Yes	5.1	IR
1	40ml Glass	MeOH	Yes	5.1	IR

Extraction / Prep.

Parameter	Result	Method	Run Date	Analyst	Flags
Metal Digestion	Completed	SW3050B	12/27/22 10:45	JRH	
Sample wt. (g) / Methanol (ml)*	12.519/12	SW5035A	12/27/22 12:20	BDO	
Mercury Digestion	Completed	SW7471B	12/29/22 13:56	CTV	

Inorganics

Method: SM2540B, Run Date: 12/22/22 16:12, Analyst: MAM

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Total Solids*	92	1		%	1		

Metals

Method: SW6020A, Run Date: 12/27/22 12:58, Analyst: JRH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags	
Arsenic	6.88	0.20		mg/kg	243	7440-38-2		
Barium	271	1.0		mg/kg	243	7440-39-3		
Cadmium	0.92	0.20		mg/kg	243	7440-43-9		
Chromium	8.86	0.50		mg/kg	243	7440-47-3		
Copper	69.4	0.50		mg/kg	243	7440-50-8		
Lead	270	0.30		mg/kg	243	7439-92-1		
Selenium	0.60	0.40		mg/kg	243	7782-49-2		
Silver	1.62	0.20		mg/kg	243	7440-22-4		
Zinc	215	0.50		mg/kg	243	7440-66-6		

Method: SW7471B, Run Date: 12/29/22 15:11, Analyst: CTV

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Mercury	0.228	0.050		ma/ka	61	7439-97-6	

Organics - Volatiles

Volatile Organics 5035, Method: SW5035A/8260C, Run Date: 12/28/22 23:37, Analyst: KAG

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Diethyl ether	Not detected	200		ug/kg	56.4	60-29-7	
Acetone	Not detected	1,000		ug/kg	56.4	67-64-1	
Methyl iodide	Not detected	100		ug/kg	56.4	74-88-4	
Carbon disulfide	Not detected	300		ug/kg	56.4	75-15-0	
tert-Methyl butyl ether (MTBE)	Not detected	200		ug/kg	56.4	1634-04-4	
Acrylonitrile	Not detected	100		ug/kg	56.4	107-13-1	
2-Butanone (MEK)	Not detected	850		ug/kg	56.4	78-93-3	
Dichlorodifluoromethane	Not detected	300		ug/kg	56.4	75-71-8	
Chloromethane	Not detected	300		ug/kg	56.4	74-87-3	
Vinyl chloride	Not detected	60		ug/kg	56.4	75-01-4	
Bromomethane	Not detected	200		ug/kg	56.4	74-83-9	
Chloroethane	Not detected	300		ug/kg	56.4	75-00-3	

Lab Sample ID: S43774.04 (continued)

Sample Tag: 3b

Volatile Organics 5035, Method: SW5035A/8260C, Run Date: 12/28/22 23:37, Analyst: KAG (continued)

Volatile Organics 5035, Method: S						CA <i>C</i> #	Поло
Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Trichlorofluoromethane	Not detected	100		ug/kg	56.4	75-69-4	
1,1-Dichloroethene	Not detected	60		ug/kg	56.4	75-35-4	
Methylene chloride	Not detected	100		ug/kg	56.4	75-09-2	
trans-1,2-Dichloroethene	Not detected	60		ug/kg	56.4	156-60-5	
1,1-Dichloroethane	Not detected	60		ug/kg	56.4	75-34-3	
cis-1,2-Dichloroethene	Not detected	60		ug/kg	56.4	156-59-2	
Tetrahydrofuran*	Not detected	1,000		ug/kg	56.4	109-99-9	
Chloroform	Not detected	60		ug/kg	56.4	67-66-3	
Bromochloromethane	Not detected	100		ug/kg	56.4	74-97-5	
1,1,1-Trichloroethane	Not detected	60		ug/kg	56.4	71-55-6	
4-Methyl-2-pentanone (MIBK)	Not detected	3,000		ug/kg	56.4	108-10-1	
2-Hexanone	Not detected	3,000		ug/kg	56.4	591-78-6	
Carbon tetrachloride	Not detected	60		ug/kg	56.4	56-23-5	
Benzene	Not detected	60		ug/kg	56.4	71-43-2	
1,2-Dichloroethane	Not detected	60		ug/kg	56.4	107-06-2	
Trichloroethene	Not detected	60		ug/kg	56.4	79-01-6	
1,2-Dichloropropane	Not detected	60		ug/kg	56.4	78-87-5	
Bromodichloromethane	Not detected	100		ug/kg	56.4	75-27-4	
Dibromomethane	Not detected	300		ug/kg	56.4	74-95-3	
cis-1,3-Dichloropropene	Not detected	60		ug/kg	56.4	10061-01-5	
Toluene	Not detected	60		ug/kg	56.4	108-88-3	
trans-1,3-Dichloropropene	Not detected	60		ug/kg	56.4	10061-02-6	
1,1,2-Trichloroethane	Not detected	60		ug/kg	56.4	79-00-5	
Tetrachloroethene	Not detected	60		ug/kg	56.4	127-18-4	
trans-1,4-Dichloro-2-butene	Not detected	60		ug/kg	56.4	110-57-6	
Dibromochloromethane	Not detected	100		ug/kg	56.4	124-48-1	
1,2-Dibromoethane	Not detected	20		ug/kg	56.4	106-93-4	М
Chlorobenzene	Not detected	60		ug/kg	56.4	108-90-7	
1,1,1,2-Tetrachloroethane	Not detected	100		ug/kg	56.4	630-20-6	
Ethylbenzene	Not detected	60		ug/kg	56.4	100-41-4	
p,m-Xylene	Not detected	100		ug/kg	56.4		
o-Xylene	Not detected	60		ug/kg	56.4	95-47-6	
Styrene	Not detected	60		ug/kg	56.4	100-42-5	
Isopropylbenzene	Not detected	300		ug/kg	56.4	98-82-8	
Bromoform	Not detected	100		ug/kg	56.4	75-25-2	
1,1,2,2-Tetrachloroethane	Not detected	60		ug/kg	56.4	79-34-5	
1,2,3-Trichloropropane	Not detected	100		ug/kg	56.4	96-18-4	
n-Propylbenzene	Not detected	60		ug/kg ug/kg	56.4	103-65-1	
Bromobenzene	Not detected	100		ug/kg ug/kg	56.4	108-86-1	
1,3,5-Trimethylbenzene	Not detected	60		ug/kg ug/kg	56.4	108-67-8	
tert-Butylbenzene	Not detected	60		ug/kg ug/kg	56.4 56.4	98-06-6	
1,2,4-Trimethylbenzene	Not detected	60		ug/kg ug/kg	56.4 56.4	95-63-6	
	Not detected	60			56.4 56.4	135-98-8	
sec-Butylbenzene				ug/kg			
p-Isopropyltoluene	100	100		ug/kg	56.4	99-87-6	
1,3-Dichlorobenzene	Not detected	100		ug/kg	56.4	541-73-1	
1,4-Dichlorobenzene	Not detected	100		ug/kg	56.4	106-46-7	
1,2-Dichlorobenzene	Not detected	100		ug/kg	56.4	95-50-1	
1,2,3-Trimethylbenzene	Not detected	60		ug/kg	56.4	526-73-8	
n-Butylbenzene	Not detected	60		ug/kg	56.4	104-51-8	

M-Result reported to MDL not RDL

Supplemental Report

Lab Sample ID: S43774.04 (continued)

Sample Tag: 3b

Volatile Organics 5035, Method: SW5035A/8260C, Run Date: 12/28/22 23:37, Analyst: KAG (continued)

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Hexachloroethane	Not detected	300		ug/kg	56.4	67-72-1	
1,2-Dibromo-3-chloropropane	Not detected	300		ug/kg	56.4	96-12-8	
1,2,4-Trichlorobenzene	Not detected	370		ug/kg	56.4	120-82-1	
1,2,3-Trichlorobenzene	Not detected	370		ug/kg	56.4	87-61-6	
Naphthalene	Not detected	300		ug/kg	56.4	91-20-3	
2-Methylnaphthalene	Not detected	100		ug/kg	56.4	91-57-6	

Page 15 of 19

Lab Sample ID: S43774.05

Sample Tag: 4a

Collected Date/Time: 12/22/2022 08:00

Matrix: Soil

COC Reference: 151452

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	I hermometer #
1	4oz Glass	None	Yes	5.1	IR

Extraction / Prep.

Parameter	Result	Method	Run Date	Analyst	Flags
Metal Digestion	Completed	SW3050B	12/27/22 10:45	JRH	_
Pesticides Extraction*	Completed	SW3546	12/27/22 13:00	TAW	
Mercury Digestion	Completed	SW7471B	12/29/22 13:56	CTV	

Inorganics

Method: SM2540B, Run Date: 12/22/22 16:12, Analyst: MAM

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Total Solids*	83	1		%	1		

Metals

Method: SW6020A, Run Date: 12/27/22 13:00, Analyst: JRH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Arsenic	17.3	0.20		mg/kg	272	7440-38-2	
Barium	598	1.0		mg/kg	272	7440-39-3	
Cadmium	6.50	0.20		mg/kg	272	7440-43-9	
Chromium	24.6	0.50		mg/kg	272	7440-47-3	
Copper	167	0.50		mg/kg	272	7440-50-8	
Lead	966	0.30		mg/kg	272	7439-92-1	
Selenium	1.11	0.40		mg/kg	272	7782-49-2	
Silver	1.33	0.20		mg/kg	272	7440-22-4	
Zinc	2,220	0.50		mg/kg	272	7440-66-6	

Method: SW7471B, Run Date: 12/29/22 15:14, Analyst: CTV

, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·						
Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Mercury	1.014	0.050		ma/ka	73	7439-97-6	

Organics - PCBs/Pesticides

Organochlorine Pesticides, Method: SW8081B, Run Date: 12/27/22 17:50, Analyst: JANB

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Aldrin	Not detected	20		ug/kg	10	309-00-2	
a-BHC	Not detected	20		ug/kg	10	319-84-6	
b-BHC	Not detected	20		ug/kg	10	319-85-7	
d-BHC	Not detected	20		ug/kg	10	319-86-8	
g-BHC (Lindane)	Not detected	20		ug/kg	10	58-89-9	
Chlordane	Not detected	100		ug/kg	10	57-74-9	
4,4'-DDD	Not detected	20		ug/kg	10	72-54-8	
4,4'-DDE	120	20		ug/kg	10	72-55-9	
4,4'-DDT	80	20		ug/kg	10	50-29-3	
Dieldrin	Not detected	20		ug/kg	10	60-57-1	
Endosulfan I	Not detected	20		ug/kg	10	959-98-8	
Endosulfan II	Not detected	20		ug/kg	10	33213-65-9	
Endosulfan sulfate	Not detected	20		ug/kg	10	1031-07-8	

Supplemental Report

Lab Sample ID: S43774.05 (continued)

Sample Tag: 4a

Organochlorine Pesticides, Method: SW8081B, Run Date: 12/27/22 17:50, Analyst: JANB (continued)

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Endrin	Not detected	20		ug/kg	10	72-20-8	_
Endrin aldehyde	Not detected	20		ug/kg	10	7421-93-4	
Heptachlor	Not detected	20		ug/kg	10	76-44-8	
Heptachlor epoxide	Not detected	20		ug/kg	10	1024-57-3	
Methoxychlor	Not detected	50		ug/kg	10	72-43-5	
Toxaphene	Not detected	170		ug/kg	10	8001-35-2	
Endrin Ketone	Not detected	20		ug/kg	10	53494-70-5	

Page 17 of 19

Lab Sample ID: S43774.06

Sample Tag: 5a

Collected Date/Time: 12/22/2022 10:00

Matrix: Soil

COC Reference: 151452

Sample Containers

#	туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	i nermometer #
1	4oz Glass	None	Yes	5.1	IR

Extraction / Prep.

Parameter	Result	Method	Run Date	Analyst	Flags
Metal Digestion	Completed	SW3050B	12/27/22 10:45	JRH	
Extraction, PCB*	Completed	SW3546	12/27/22 13:00	TAW	
Pesticides Extraction*	Completed	SW3546	12/27/22 13:00	TAW	
PNA Extraction*	Completed	SW3546	12/30/22 12:20	JGH	
Mercury Digestion	Completed	SW7471B	12/29/22 13:56	CTV	

Inorganics

Method: SM2540B, Run Date: 12/22/22 16:12, Analyst: MAM

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Total Solids*	85	1		%	1		

Metals

Method: SW6020A, Run Date: 12/27/22 13:02, Analyst: JRH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Arsenic	4.65	0.20		mg/kg	248	7440-38-2	_
Barium	63.5	1.0		mg/kg	248	7440-39-3	
Cadmium	0.50	0.20		mg/kg	248	7440-43-9	
Chromium	14.2	0.50		mg/kg	248	7440-47-3	
Copper	31.6	0.50		mg/kg	248	7440-50-8	
Lead	164	0.30		mg/kg	248	7439-92-1	
Selenium	Not detected	0.40		mg/kg	248	7782-49-2	
Silver	Not detected	0.20		mg/kg	248	7440-22-4	
Zinc	124	0.50		mg/kg	248	7440-66-6	

Method: SW7471B, Run Date: 12/29/22 15:17, Analyst: CTV

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Mercury	0.183	0.050		mg/kg	72	7439-97-6	

Organics - PCBs/Pesticides

Organochlorine Pesticides, Method: SW8081B, Run Date: 12/27/22 18:06, Analyst: JANB

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Aldrin	Not detected	20		ug/kg	10	309-00-2	
a-BHC	Not detected	20		ug/kg	10	319-84-6	
b-BHC	Not detected	20		ug/kg	10	319-85-7	
d-BHC	Not detected	20		ug/kg	10	319-86-8	
g-BHC (Lindane)	Not detected	20		ug/kg	10	58-89-9	
Chlordane	Not detected	100		ug/kg	10	57-74-9	
4,4'-DDD	20	20		ug/kg	10	72-54-8	
4,4'-DDE	20	20		ug/kg	10	72-55-9	
4,4'-DDT	30	20		ug/kg	10	50-29-3	
Dieldrin	Not detected	20		ug/kg	10	60-57-1	
Endosulfan I	Not detected	20		ug/kg	10	959-98-8	

Lab Sample ID: S43774.06 (continued)

Sample Tag: 5a

Organochlorine Pesticides, Method: SW8081B, Run Date: 12/27/22 18:06, Analyst: JANB (continued)

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Endosulfan II	20	20		ug/kg	10	33213-65-9	
Endosulfan sulfate	Not detected	20		ug/kg	10	1031-07-8	
Endrin	Not detected	20		ug/kg	10	72-20-8	
Endrin aldehyde	Not detected	20		ug/kg	10	7421-93-4	
Heptachlor	Not detected	20		ug/kg	10	76-44-8	
Heptachlor epoxide	Not detected	20		ug/kg	10	1024-57-3	
Methoxychlor	Not detected	50		ug/kg	10	72-43-5	
Toxaphene	Not detected	170		ug/kg	10	8001-35-2	
Endrin Ketone	Not detected	20		ug/kg	10	53494-70-5	

PCB List, Method: SW8082A, Run Date: 12/27/22 20:12, Analyst: JANB

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
PCB-1016	Not detected	330		ug/kg	10	12674-11-2	
PCB-1242	Not detected	330		ug/kg	10	53469-21-9	
PCB-1221	Not detected	330		ug/kg	10	11104-28-2	
PCB-1232	Not detected	330		ug/kg	10	11141-16-5	
PCB-1248	Not detected	330		ug/kg	10	12672-29-6	
PCB-1254	Not detected	330		ug/kg	10	11097-69-1	
PCB-1260	400	330		ug/kg	10	11096-82-5	

Organics - Semi-Volatiles

Polynuclear Aromatics, Method: SW8270D, Run Date: 12/30/22 17:00, Analyst: JGH

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Acenaphthene	Not detected	300		ug/kg	6	83-32-9	
Acenaphthylene	Not detected	300		ug/kg	6	208-96-8	
Anthracene	Not detected	300		ug/kg	6	120-12-7	
Benzo(a)anthracene	700	300		ug/kg	6	56-55-3	
Benzo(a)pyrene	700	300		ug/kg	6	50-32-8	
Benzo(b)fluoranthene	1,100	300		ug/kg	6	205-99-2	р
Benzo(k)fluoranthene	1,300	300		ug/kg	6	207-08-9	р
Benzo(ghi)perylene	300	300		ug/kg	6	191-24-2	
Chrysene	700	300		ug/kg	6	218-01-9	
Dibenzo(ah)anthracene	Not detected	300		ug/kg	6	53-70-3	
Fluoranthene	1,300	300		ug/kg	6	206-44-0	
Fluorene	Not detected	300		ug/kg	6	86-73-7	
Indeno(1,2,3-cd)pyrene	300	300		ug/kg	6	193-39-5	
Naphthalene	Not detected	300		ug/kg	6	91-20-3	
Phenanthrene	700	300		ug/kg	6	85-01-8	
Pyrene	1,100	300		ug/kg	6	129-00-0	
2-Methylnaphthalene	Not detected	300		ug/kg	6	91-57-6	

p-Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.

Page 19 of 19

Merit Laboratories Login Checklist

Lab Set ID:S43774

Client: MCDOWELL (McDowell & Associates)

Project: 22-16348

Submitted: 12/22/2022 11:55 Login User: MMC

Attention: Jennifer Lagerbohm Address: McDowell & Associates 21355 Hatcher Avenue Ferndale, MI 48220

Phone: O:248-399-2066 FAX:

 ${\it Email: jennifer. lager bohm@mcdowasc.com}$

Selec	tion			Description	Note
Samp	le Receiv	/ing			
01.	X Yes	No	□ N/A	Samples are received at 4C +/- 2C Thermometer #	IR 5.1
02.	X Yes	No	□ N/A	Received on ice/ cooling process begun	
03.	Yes	X No	□ N/A	Samples shipped	
04.	Yes	X No	□ N/A	Samples left in 24 hr. drop box	
05.	Yes	No	X N/A	Are there custody seals/tape or is the drop box locked	
Chair	of Custo	ody			
06.	X Yes	No	□ N/A	COC adequately filled out	
07.	X Yes	No	□ N/A	COC signed and relinquished to the lab	
08.	X Yes	No	□ N/A	Sample tag on bottles match COC	
09.	Yes	X No	□ N/A	Subcontracting needed? Subcontacted to:	
Prese	ervation				
10.	X Yes	☐ No	N/A	Do sample have correct chemical preservation	
11.	Yes	No	X N/A	Completed pH checks on preserved samples? (no VOAs)	
12.	Yes	X No	N/A	Did any samples need to be preserved in the lab?	
Bottle	e Conditio	ons			
13.	X Yes	No	□ N/A	All bottles intact	
14.	X Yes	☐ No	N/A	Appropriate analytical bottles are used	
15.	X Yes	☐ No	N/A	Merit bottles used	
16.	X Yes	☐ No	N/A	Sufficient sample volume received	
17.	Yes	X No	N/A	Samples require laboratory filtration	
18.	X Yes	☐ No	N/A	Samples submitted within holding time	
19.	Yes	No	X N/A	Do water VOC or TOX bottles contain headspace	

Corrective action for all exceptions is to ca	all the client and to notify the project manager.
Client Review By:	Date:

Merit 2680 East Lansing Dr., East Lansing, MI 48823
Phone (517) 332-0167 Fax (517) 332-4034
www.meritlabs.com

1	1	
C.O.C. PAGE #	OF	151452

REPORT TO CHAIN OF	CUSTODY RECORD , INVOICE TO
CONTACT NAME HUNGEr Lader bohm	CONTACT NAME SAME
COMPANY MCDOWELL & Associates	COMPANY
ADDRESS 21355 Hatcher Ave	ADDRESS
city terindale 1991 7822	O CITY STATE ZIP CODE
PHONE NO. 12 DUY - COLOTTONS. P.O. NO.	PHONE NO. E-MAIL ADDRESS
E-MAIL ADDRESS Per, lager both @ ma distensive com	ANALYSIS (ATTACH LIST IF MORE SPACE IS REQUIRED)
PROJECT NO./NAME 12-11348 SAMPKERIST LEASE PRINTING	
70 10 10	☐ OHIO VAP ☐ Drinking Water
1	DoD DPDES
DELIVERABLES REQUIRED STD LEVEL II LEVEL III LEVEL IV EDD O	Project Locations
CODE: SL=SLUDGE DW=DRINKING WATER O=OIL WP=WIPE A=AIR WS=WAST	# Containers & Preservatives
MERIT COLLECTION SAMPLE TAG LAB NO. FOR LAB USE ONLY DATE TIME SAMPLE TAG IDENTIFICATION-DESCRIPTION	Special Instructions
4374.017/22/22800 2a S	
02 1 1000 20 D 5	
.03 1 3a 5	21 X X X X
30 5	21 X X
.05 40 5	
06 1 1 50 5	111 2
.00	
	IME RELINQUISHED BY: DATE TIME
SIGNATURE/ORGANIZATION	SIGNATURE/ORGANIZATION IME RECEIVED BY: DATE TIME
SIGNATURE/ORGANIZATION 147422	Signature/organization
SIGNATURE/ORGANIZATION / / / / / / / / / / / / / / / / / / /	//S YESD NOD 5.1
RECEIVED BY: SIGNATURE/ORGANIZATION M. CALLON 12/22/22	SEAL NO. SEAL INTACT INITIALS YES NO